A METHODOLOGY FOR DESIGNING AND
MANAGING CONTEXT-AWARE
WORKFLOWS

S. Modafferi!, B. Benatallah?, F. Casati3, and B. Pernici!

L politecnico di Milano
Dipartimento di Elettronica e Informazione
P.zza L. Da Vinci 32 - 20133 - Milano Italy

2 University of New South Wales,
CSE, Sydney NSW 2052, Australia

3Hewlett-Packard, Palo Alto, CA, 94304, USA

Abstract: The increased availability of context information and the widespread
: adoption of more and more powerful devices creates the opportunity
and desire for context-aware. applications. In this paper we focus on a
specific but important type of applications: workflow applications. Just
like other applications, workflows too require context-aware capabilities,
that is, require the capability of modeling business logic that is sensitive
and varies depending on the users’ context. In this paper, we propose a
methodology for context-sensitive business processes development. We
extend existing process modeling languages to allow modelling context
sensitive regions (i.e, parts of the business process that may have dif-
ferent behaviours depending on context). We also introduce context
change patterns as a mean to identify the contextual situations (and in
particular context change situations) that may have an impact on the
behaviour of a business process. Finally, we propose a set of transfor-
mation rules that allow generating a BPEL-based business process from
a context sensitive business process. This allows using existing process
engines to support context-sensitive business processes.

Keywords: User Context, Context-aware Workflow, Adaptive Workflow, Context
Sensitive Regions, Dynamic Workflow Execution

1. INTRODUCTION

Capturing and managing user context is becoming more and more
important in business applications. With recent advances in mobile
technologies that provide several ways for identifying user contexts (e.g.,
identifying user location) (Capra et al., 2003; Chakraborty and Lei, 2004;

92 S. Modafferi, B. Benatallah, F. Casati, and B. Pernici

Dey and Abowd, 2001) and for leveraging context-based applications,
the need and opportunity for delivering customized services to users in
different situations is becoming prominent (Roman et al., 2000).

Generally speaking, contezt refers to information that characterizes
the situation of a person, place, or object, that is relevant to a given
system. In our work, we focus on context information that is relevant
to provide personalized services to users based on their environment
and needs. This includes information such as user location, current
user device, or network bandwidth. Existing work in delivering per-
sonalized services focused mostly on capturing and representing context
information (Chakraborty and Lei, 2004; Dey, 2001). This is clearly an
interesting and necessary step as it provides for recognizing context as
a separate abstraction, and fosters the development of tools and tech-
niques for context management.

However, delivering personalized services to users requires method-
ologies and techniques that not only allow developers to capture and
manage context, but that also facilitate the creation of context-aware
applications. As a particular and very important kind of (context-aware)
applications, in this paper we consider workflow applications, and more
in general applications developed using composition technologies (also
called process technology in the following). Workflow applications are
rapidly gaining popularity, especially with the advent of Web services
and the push towards service-oriented computing, as the availability of
homogeneous components (services) makes it easier to develop applica-
tions by composing existing building blocks.

Specifically, the aim of this paper is to identify techniques that facili-
tate the development of context-sensitive processes, including in partic-
ular the ability to manage context change, a key issue in any context-
aware application development. These techniques are based on what
we believe to be simple but essential extensions to “traditional” process
models. Indeed, the main challenge in this work has been that of iden-
tifying the process modeling concepts that could capture the essence of
context-sensitive applications, or at least a wide variety of them, while
avoiding to unnecessarily making process modeling more complex.

Our work builds upon existing techniques for managing context infor-
mation and extends them by providing a methodology and an architec-
ture for developing context sensitive processes. We propose the concept
of context-sensitive region to localize parts of the process that have dif-
ferent behaviors according to context. A set of context change patterns,
that classify and capture typical context changes is defined. Context-
sensitive regions include the description of how to react to a context
change defined in a context change pattern. The proposed model will

A Methodology for Designing and Managing Context-Aware Workflows 93

be used as a basis to generate the BPEL process and exception handlers
to manage context-sensitive processes.

The paper is structured as follows: in Section 2, we discuss the in-
tegration of context in business process models. Section 3 presents our
approach for modeling context-sensitive business processes. The run-
time aspects are presented in Section 4. Section 5 presents related work,
while Section 6 gives conclusions and future directions.

2. CONTEXT-SENSITIVE BUSINESS
PROCESS MODELING

2.1 Context Definition

Delivering personalized services requires a precise definition of user
needs and user environments. Traditional service provisioning relies on
a relatively static characterization of the user and the user’s context,
because the changes in the user environment are relatively limited and
because of the inability to dynamically and automatically capture con-
text and context change (Roman et al., 2000).

Several definitions of context have been proposed in the literature. In
(Dey, 2001), context and context-aware computing have been defined as:

“Context is any information that can be used to characterize the situa-
tion of an entity. An entity is a person, place, or object that is considered
relevant to the interaction between a user and an application, including
the user and applications themselves.”

“A system is context-aware if it uses contexrt to provide relevant infor-
mation and/or services, where relevancy depends on the user’s task.”

In general, the user context can consist of many different aspects, and
different context models include different properties as elements of a con-
text. The most common and typical context attribute is the geographical
location, which can be expressed at different levels of granularity (XYZ
coordinates, city, state, etc). Other context information may include a
“logical” location (e.g., “in a meeting” or “at home”), the present occu-
pation, the weather at the user’s location, and many other attributes.

For the specifics of the context model, the present paper is based on
the one developed within the MAIS project (Cappiello et al., 2005). In
particular, besides generic location-related user attributes, the MAIS
model focuses on user access devices (e.g., PDAs, laptop, or others)
and quality of network connectivity. However, it should be noted that
while we consider a specific context model as example, the concepts
presented in the paper are generally applicable to virtually any context
model. In fact, even if in our approach workflow design is influenced by
consideration of context, the use of high level representation of context

94 S. Modafferi, B. Benatallah, F. Casati, and B. Pernici

decouples the problem of managing workflow schema modification and
of context model evolution.

2.2 Context-Sensitive Process Models

There are many ways in which processes can leverage context infor-
mation to create context-sensitive applications. One is to make routing
decisions. For example, information about skiing conditions can be de-
livered to users that are in a mountain area, but not to others. Another
usage of context information is to configure a given service invoked as
part of the process, or to select a specific provider among the ones able
to provide a given service. For example, a news delivery service may
be configured to send videos of different quality based on the network
bandwidth or user screen resolution. Finally, an important aspect is
context change management, which involves the ability of the process
to alter its course based on new context information about the user to
which the process is delivering a service.

In prior work, there is a strong relationship between application and
context model and very often they are developed together.

In our approach, the user context is considered as first class citizen in
business processes. Each process has an implicitly defined set of data ele-
ments (process variables) that capture the user context. These variables
are automatically populated and maintained by the infrastructure. For
example, the user context may include the notion of “user device”, which
can assume the values of PDA and PC. The context is monitored by a
context monitor, which measures context variables according to what is
called Low level context model (see Fig. 1). We use the term “Low level”
to denote that it is typically at a low level of abstraction (e.g., a location
can be expressed in xyz coordinates). For this a conventional context
representation model is used (i.e., (Cappiello et al., 2005; Chakraborty
and Lei, 2004)). This model provides means to represent user context
attributes and user context changes (also called context change events),
such as decrease in throughput or change in location. The low level con-
text is then mapped to high level context dimensions, which form the
high level user context (or simply user context hereafter). This map-
ping is necessary to abstract from the details of the context (and from
context changes) that would be too finegrained and detailed for most
workflow applications. Each dimension can have a set of predefined val-
ues (High, Low; PDA, PC), and correspond to the process variables that
are implicitly included in each workflow models.

The Context Mapping module is in charge of translating measured
context values into values for the dimensions at the higher level, accord-

A Methodology for Designing and Managing Context-Aware Workflows 95

The engine monitors the high level user context, and in
particular changes to the context, and updates the context
variables in the process models. It also triggers changes
of configurations as needed in the context sensitive
regions

User context (high .

level - qualitative) e.g., QoS="high”

This components has the rules for mapping sets of low
level (typically itati into fitati
context variables (called dimensions in this paper)

e.g., throughput=30kb/sec

This cormponent monitors the user’s environment and
measures context variables

(’:I:" a

e —‘—-Ignvironmem \3
S -

e

Figure 1. Relationship between workflow and context

ing to a set of Context Rules. For instance, if in the low level context
the variable representing the throughput of the net decreases, this fact
is transparent to the High Level User Model until a given threshold is
reached, after which a rule in the Context Mapping component deter-
mines that the throughput dimension has now the value“Low Qos”.

To facilitate context-sensitive process modeling we also propose in
the workflow model the concept of contert-sensitive region. A context-
sensitive region is a part of the business process that may have different
behaviors (e.g., different flow structures) depending on the context. A
region is associated to several configurations - essentially corresponding
to subprocesses - that represent the different behaviors. Whenever the
region is instantiated, a specific configuration, among the possible ones,
is selected based on the context.

The designer has to define an ”entry condition” for each region. It
is a boolean condition defined over the user context. The set of entry
conditions of configurations for a region must define a partition over the
user context. An“otherwise” condition can also be specified to capture
all cases in which no entry condition is verified. Note that if the entry
conditions do not define a partition, then the behavior of the system is
non deterministic (the system currently does not enforce that conditions
create a partition of the user context).

The problem of capturing and managing context change is at the heart
of context-sensitive applications. The key here is to devise a model that
makes it easy for developer to manage simple context changes, possibly
with minimal or no modeling, while giving also the possibility to manage

96 S. Modafferi, B. Benatallah, F. Casati, and B. Pernici

complex context change requirements. To this end, we propose an ap-
proach that is based on schema evolution techniques and migration rules.
Schema evolution is the default context change behavior provided by the
model, and the nice aspect of it is that it requires no modeling from the
user. Briefly, it works as follows: as mentioned, the system takes care of
automatically monitoring the context. This also happens when a work-
flow instance is within a CSR. At some point, it may be that the system
detects that the entry condition for the CSR in which an instance is
(called “initial configuration”) turns out to become false, and the en-
try condition of another configuration (called “target configuration”)
becomes instead true (one entry condition must be true as conditions
identify a partition). In this case, the problem is handled analogously to
what is done in workflow schema evolution: the execution of the instance
is rolled back until a point in the CSR is reached where the execution of
the instance in the initial configuration “can be seen as” an execution of
the instance in the target configuration, at which point the instance is
migrated to the target configuration and continues as prescribed by the
process flow in the target configuration. As a simple example, the initial
configuration can be composed by a sequence of tasks A,B,C,D, while
the target configuration is a sequence of tasks A,B,X,Y. If the context
change occurs while the instance was performing task D, then the exe-
cution of D is aborted, and the execution of C is compensated. At this
point, the execution of the instance in the initial configuration (A,B) can
be seen as an instance of the target configuration (which also starts with
A B). Hence the instance is migrated and the next task to be activated
is X, according to the flow in the target configuration. In the worst case,
the compensation of the initial configuration continues to the start of
the CSR. We do not detail schema evolution further as it has been the
subject of many papers (although in different scenario - our contribution
here is its application to context change management and the idea to
use this approach to simplify process definition and maintenance). The
interested reader is referred to (Casati et al., 1998; Reichert et al., 2003).

Schema evolution proposes a default behavior that may be inade-
quate in some situations, for example due to the excessive loss of work
due to compensation of completed activities. To handle this cases, our
approach proposes the notions of context change patterns and of mi-
gration rules to respectively capture the interesting change events and
manage the change with ad hoc behavior Context change patterns cap-
ture the different ways in which a context can evolve and help defining
how the change is relevant from a process model perspective. Patterns
help characterizing and classifying the different types of context changes
and as such simplify the definition of how to handle a change within a

A Methodology for Designing and Managing Context-Aware Workflows 97

context-sensitive region. Indeed, the combination of context regions and
context change patterns allows for flexible and easily maintainable pro-
cess models, which are even robust to the evolution of the context model
itself. A Transition is an instantiation of a Pattern. It causes changes
within active workflow instances, and specifically in the context-sensitive
regions sensible to the related context-change pattern. For a given tran-
sition in the User Context, the user may associate a Transformation in
the Workflow model. A transition is analogous to an ad hoc migration.
It includes the explicit identifications of points in the workflow where
an instance should migrate from the initial to the final configuration
(regardless of whether at that point the execution in the initial config-
uration can be seen as an instance of the target configuration), along
with rules to manage the migration (e.g., data transformation).

2.3 Context Change Patterns

To enhance the design of context-aware workflows, it is important to
determine patterns that capture common behaviors followed by the users
to which the workflow provides a service. We identified four patterns
which cover several interesting situations as well as a framework for
building new patterns. As stated in the previous paragraph, patterns in
our model are the basis for context state transitions (e.g. for the pattern
“Device dependency” the transition can be “PDA to Pc” and “PC to
PDA?”). It is possible to define new interesting dimensions and then new
pattern as transitions in this dimension. The identified patterns are:

Device dependency. It represents the situation when a user changes
device, but is still involved in a business process. For example, the user
uses a PDA initially, being out of office, and then connects through
a desktop later on, when in the office, continuing to interact with the
same process. The specificity of this pattern is that it could provide for
data movement; in fact during a process some information can be stored
only on the client side and, changing the client device, it is necessary to
perform a migration of this data to the new device.

Qos driven choice. It represents the possibility of having different
business process configurations according to different QoS levels in the
client side. A typical situation is the abrupt decrease of available band-
width that requires a substitution/reconfiguration of some services on
the server side.

Location driven choice. It represents a situation where business
process configurations are associated to given user locations. For exam-
ple, the selection of a restaurant from a list will be different depending
on the current city and country, offering different selection services to

98 S. Modafferi, B. Benatallah, F. Casati, and B. Pernici

the user and, if the location based choice is enough grained, a user can
change location within a business process several times.

User on-line/off-line. Due to resource consumption constraints,
user may prefer to work off-line. This pattern represents the typical
working mode of a user connected through a mobile device. The inter-
action of wfms engine with the user is not continuous and during the
user absence the process can show a different behavior waiting for his
return.

Conf1: Conf2:
Device=PC Device=PDA

e
Login to the syste

Only flight Flight + Hotel + City Overview //
Ve

/7
/7,7

igh

City Overview Conf1: Conf2:
(CSR 2) &~~~ QoS=High QoS=Low
~ ~—l

~
> video streaming| (textual overviey
CSR=Context-Sensitive .
Region interactive maj

Figure 2. 'Wf with regions

24 Example

We illustrate the proposed approach using a simple example, taken
from the travel reservation domain. In the sample process, a user can
login in the system, and is then faced with the following two possibilities:
i) book a flight; ii) book a flight, a hotel, and also get information about
the destination city.

Assume that the flight booking task is context independent while
the other tasks are context-sensitive (i.e., they have different behaviors
according to the current user context). Fig. 2 shows the model of such
business process.

The “Book Hotel” Region (CSR1) is sensible only to the Pattern De-
vice Switching and thus the interesting Dimension is only “Device”; in
the user context model there are two states “PC” and “PDA” and in
the workflow model two configurations for the region. The difference
between configurations are mainly that if the user device is a PDA the
server will send in parallel part of the information to the PDA and part
to a different client: a mailbox.

A Methodology for Designing and Managing Context-Aware Workflows 99

The “City Overview” Region (CSR2) is sensible only to the Pattern
Qos driven choice and thus the interesting Dimension is only “QoS”;
in the User Context Model there are two states “High QoS” and “Low
Qo0S” and in the Workflow Model two configurations for the Region.
The difference between configurations are that if the QoS is high the
services are interactive (e.g. dynamic map), otherwise they are simple
static information (e.g. textual information). Further details about the
example will be presented in Section 3.2.

3. MODELING ABSTRACTIONS

In this section we will introduce our model. The Workflow model is
composed of Context Sensitive Regions and each region is composed by
different configurations. Also context model aspects are discussed.

3.1 Workflow Model

To describe the workflow model we define a workflow as directed
graph. Our definition is based on traditional definition of workflows
as graphs and then only specific constructs are presented here. In our
model a Workflow W is composed by a set of i) Traditional coordination
C and task T nodes; ii) Regions Reg; iii) Directed flow arcs Fyy.

Let Wgraph =< NW,FW > be a graph where NW: finite set of
nodes, FW: directed arc (flow relation) FW C NW x NW

Vnw € NW, Nodetype : nw — {Coordinator, Task, Reg}

NW =CUTUReg, (CNT =0)A(CNReg=0)A(TNReg=0)

where C: set of coordinator nodes (e.g. switch, loop), T: set of Task
nodes, Reg: set of Context Sensitive Region.

Context Sensitive Region. A Context-sensitive region (hereafter
CSR) is a subprocess of the workflow that may have several configura-
tions exporting different behavior according to specific conditions (i.e.
user context).

A region is composed of alternative configurations linked with par-
ticular arcs called migration arcs. A migration arc is associated with
instructions on how to migrate a workflow instance from one configura-
tion to another.

A typical example of information associated to a migration arc is the
data items that need to be moved when a context change occurs.

For example the Device Switching pattern provide for the change of
the device and this fact can imply the necessity to move some data from
the old device to the new one (see also the example in Section 3.2).

100 S. Modafferi, B. Benatallah, F. Casati, and B. Pernici

Configuration. A Configuration is a subprocess of the workflow
related to a set of states in the User Context Model (i.e. User Device =
PDA). A Configuration Conf; is composed by: i) an entry condition
EC; ii) normal coordination C and task T nodes; iii) a set of Starting
Migration Points M Ps; iv) a set of Ending Migration Points M Pe; v)
a set of directed Configuration Arcs F'C.

The entry condition FC is an expression used to define when the
configuration has to be entered.

To handle the change of configuration there is a default behavior. This
default behavior requires no modeling and no effort by the user. The
system migrates the workflow from a configuration C1 to another C2.
Migrating essentially means rolling back the execution of C1 up to the
point where the instance can be seen as an instance of C2, as for the work
in Workflow evolution (Casati et al., 1998). At that point the instance
is migrated and the process continues. This also means that each task in
this model has to be associated to a (possibly null) compensation action.

For the most complex cases, the user can explicitly specify migration
rules. These rules are modeled using migration points and migration
arcs. A starting migration point-is a point in a configuration C'1 where
a direct link, that is a migration arc, to a new configuration is avail-
able. Assume the flow is in a configuration C1 and has to migrate to a
configuration C2, if in the rolling back process a migration point and a
migration arc from C1 to C2 is found then if is followed to perform the
transformation, otherwise the default behavior is exploited. The defini-
tion of migration point is similar to the notion of safe-point in the WIDE
project (Grefen et al., 1999).

Migration points and migration arcs provide high expression power to
specify migration rules. For example they allow the designer to define
business equivalent behaviors only by connecting two points and, in case,
associating a process to the arc. This power has a cost in terms of what
the designer has to specify, so we give this possibility in our model, but
we expect the default behavior to apply often and we do not realistically
expect a CSR to have a large number of configurations. Hence, this
model, and in particular the combination of automated (default) migra-
tion along with the possibility of specifying migration rules for special
cases is able to combine the need for ease of modeling/manageability
with the possibility of defining specific migration semantics for the most
complex cases. Now a formalization of the configuration is provided.

Let Conf =< EC,NC,FC > be a graph where EC: the expression
for the entry condition for the configuration, NC: finite set of nodes, FC:
directed arc FC C NC x NC

A Methodology for Designing and Managing Context-Aware Workflows

PC PDA
1) Date
Check hotel e~ 2L G — — —
1) Date 1) 3 Hotel Names/codes *
<« ey _ 1) 3 Hotel videos 2) brief descriptions

1) 3 Hotel Names/codes *

2) Video Hotels
C—————

EndingMig.Point 1 p—¢s........

< — — —{send video on mailbox) Gend codes on PDA)— —————

oenr Mig_Avre; no process: * data movement

Ending Mig.Point 1

StartingMigPoint 1

1) hotel code
2) Credit Cérd details

StartingMigPoint 1
1) hotel code

(A
+ 10 pr .,
7055 * datg mOVoman
n{

101

T IBook Hotel
1) confirmation

1) confirmation

send receipt on mail receipt_ —->

Figure 3. Region Book Hotel configurations for device switching pattern

Vnec € NC, Nodetype : nc — {Coordinater, Task, StartingMigration
Points, EndingMigrationPoints}

NC=CUTUMPsU M-Pe,
CNT=0ANCNMPs=0)ACNMPe=0)ATNMPs= 0)A
(TNMPe= 0)A(MPsN MPe = ()

where C': set of coordinator nodes, T: set of Task nodes, M Ps: set
of Starting Migration Points, M Pe: set of Ending Migration Points.

Formalization of CSR. Let Reg; =< |J;,Conf;, MA > be a graph
where Con f;: a Configuration, M A: directed arc MA C M Ps x M Pe x
Op x Proc where Op: set of optional Operations, Proc: set of optional
Processes.

3.2

Let us suppose to design a process starting from scratch. The first step
of our methodology is the definition of the high-level workflow already
presented in Section 2.4 and shown in Fig. 2. This step provides a
high-level summary of the entire workflow and allows considering in the
further steps each region as a stand alone part. The second step is the
definition of each CSR.

Book Hotel CSR (see Fig. 3). This CSR is sensible to “Device
Switching” pattern. It shows two different behavior according to the
used device.

If the user is using PC, after the reception of a query, the server will
send him information about some hotels and also a video. Then it will

Example

102 S. Modafferi, B. Benatallah, F. Casati, and B. Pernici

High QoS Low QoS
Video st ing cit m— ;
liio—s r_ea_mﬂg_cu_y@end overview in streaming video) Teﬁa_b(l.zg: iy

Ending Mig.Point 1

oose . StartinaMigPoi
oporations StartingMigPoint 1

C————— — C :VE iomap)
_______ ;Use interactive maps) 'send small static map J- — — <>

Figure 4. Region City Overview configurations for QoS driven pattern

EndingMig.Point 1

Mg ALG; 10 Proqo™
StartingMigPoinH L eesercsrsnneeses: Witmandat UL RS S

Mig_Arc; no

rocess; no

provide the task for booking according to codes provided by the user.
All operations are in sequence..

If the user is using PDA, after the reception of a query, the server will
send him on the PDA some brief information about hotels and will send
on the user email the video of the hotels. These operation are carried
out in parallel. Then the cerver will wait for the hotel code, provided by
the user, to make the reservation. Finally it will send a receipt on the
user email. There is not a task for receipt in PC configuration because
we suppose that the interaction is by web-browser and so the printout of
the page is enough as receipt. It is less probable that a PDA is connected
to a printer and so we provide a receipt on email box.

In Fig. 3 there are a pair of migration arcs. Whichever is the trans-
formation (PC to PDA or PDA to PC) starting from MPsl (Starting
Migration Point 1) the migration arc is associated with an operation for
“data movement”. This operation allows moving data on the client side
(in this case the hotel codes marked with a * in the figure). In fact, even
if, the process is running on the server side, it is possible to have data
movement in the client side. The optional process associated with the
migration arc represents a process related to the configuration change
and it is defined considering the two configurations and the starting,
respectively ending, migration point.

The default exception management is used if the user context changes
before the flow meets a migration point, that is schema evolution rules
are applied. In the other situations the migration is driven from the
migration arc starting from the last migration point. In Fig. 3 the mi-
gration arcs expresses the business equivalence of operation executed
until the migration point. The system can not determine automatically
this equivalence, in charge of the business logic, and thus the designer
had to explicitly define it.

A Methodology for Designing and Managing Context-Aware Workflows 103

City Overview CSR (see Fig. 4). This CSR is related to the pattern
“QoS driven choice”. We assume that the user device configuration is
sensible to different level of QoS (i.e. he is using an UMTS connection).
With High QoS the first task is used to send a video streaming about
the city. Then the user can use interactive city maps.

With Low Qos the first task is used to send some small texts about
the city. Then the server will send to the user a small static city map.

In this CSR all the migration arcs are not associated with processes or
other operations. Here the migration arcs are used to express the equiv-
alence in terms of behaviours. Differences are in terms of realizations of
the same behaviours according to different contexts.

4. RUN-TIME ARCHITECTURE

The output of the design phase will be a WS-BPEL process anno-
tated with context abstractions to represent context-sensitive regions. .
Each region is modeled as a stand-alone part. We propose transforma-
tion approach to translate a context sensitive WS-BPEL process into a
conventional WS-BPEL process with the appropriate handlers.

We assume that a service oriented architecture is used to manage
user context (this kind of approach is followed in several systems, e.g
(Chakraborty and Lei, 2004)). In our approach the context manager is
designed as a web service. Context changes are conveyed to the WS-BPEL
engine as messages (context change event, with parameters) from the
context manager. Context changes are managed in the WS-BPEL as ex-
ceptions and therefore the unified BPEL is composed of a normal behavior
(conditional according to the context) and a context change handler to
manage context exception.

The handler checks if an automatic migration (following the tradi-
tional schema evolution methods) is available. If it is not available the
handler performs a reverse path compensating each task until reach-
ing the last starting migration point, then it performs the actions and
processes associated with the migration arch leading to the new con-
figuration and, eventually, it restarts the normal flow from the ending
migration point (in the new configuration) reached with this migration.

Fig. 5 shows the Ws-BPEL unified schema (with specific operation for
region switching) that is the output of the CSR shown in Fig. 3 after the
automatic generation process. This schema is referred to a standard WS-
BPEL and the corresponding behavior is context-dependant according
to the design presented in the previous sections.

104 S. Modafferi, B. Benatallah, F. Casati, and B. Pernici

|

SCoPE PC * PDA

i Context Driven Switch
Default behavior NEnding_mig_point=1 Ending_mig_pomt= y\ Default behavior
i i Rec. Point
Mig. Point
o MPS1, | Driven Switch \anook Ot

Driven Switch

Check Hote|

Figure 5. Context Sensitive Region of Fig. 3 as unique WS-BPEL schema

5. RELATED WORK

The possibility of modifying workflows to increase their flexibility is
widely studied (Casati and Shan, 2001; Miiller et al., 2004; Reichert
et al., 2003; Shan et al., 2005). The reason of workflow modification are
various and not strictly related to the user “context” issue. The context-
aware workflow issue concerns many and different aspects that are now
being linked together. The most common definition of context is pro-
vided in (Dey, 2001); generic context models like (Chakraborty and Lei,
2004; Dey and Abowd, 2001) can be the basis of context-aware appli-
cations; different middleware have been proposed to interpret the con-
text providing useful information to the applications (Bellavista et al.,
2003; Capra et al., 2003). A way followed to build context aware applica-
tions can be the definition of self-contained systems like (Zariskas et al.,
2001). They have their own definition of context, are mobile-oriented
and context-aware, but they do not focus workflow systems. Other sys-
tems are workflow-based, but they focus on single context-sensitive tasks
(Long et al., 2004; Patil et al., 2004; Sheng et al., 2004).

The work presented in (Binemann-Zdanowicz et al., 2004) proposes
an approach to context-awareness for Web Information Systems that
distinguishes among the various kinds of contexts, but it is not clear
how it manages together workflow execution and its rich context model.

Some recent papers propose the extension of workflow languages and
models with aspect-oriented software design (Charfi and Mezini, 2004).
They suggest the usage of aspect-orientation as a complementary tech-

A Methodology for Designing and Managing Context-Aware Workflows 105

nique for workflow modelling and specification presenting a hybrid ap-
proach for realizing the integration of business rules (modelled as as-
pects) with a WS-BPEL orchestration engine by using aspect-oriented
programming techniques. Our definition of high level context can be
viewed as an Aspect and the proposed solution is how to exploit these
different aspects by using a standard, even if annotated, workflow model
and a standard workflow engine.

6. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented a methodology for designing and
developing Context-sensitive business processes.

By identifying patterns for capturing context changes, our approach
provides a loose coupling between workflow definition and context model.
By means of Context-Sensitive Region, a high level construct for mod-
elling context changes is provided and, eventually, by annotating an
existing workflow model a solution based on the currently available WS-
BPEL for the run-time management is provided.

We are studying a more general use of regions defining region-level
properties that are specific to a context, but not necessarily related to
the fact that a context may change. In fact even if the context is always
the same from start to end in a given workflow execution, it is possible
to define region-level properties that depends on the context, e.g., at-
tributes such as data transfer rates or resolution, used by all activities
in the region.

ACKNOWLEDGEMENTS

This work is partially funded by the Italian MURST-FIRB MAIS
Project (Multi-channel Adaptive Information Systems) and by a visiting
research grant from School of Computer Science and Engineering of the
University of New South Wales (UNSW) Sydney.

References

Bellavista, P., Corradi, A., Montanari, R., and Stefanelli, C. (2003). Dynamic binding
in mobile applications: A middleware approach. IEEE Int. Computing, 7(2):34-42.

Binemann-Zdanowicz, A., Kaschek, R., Schewe, K., and Thalheim, B. (2004). Context-
aware web information systems. In Proc. of Asia-Pacific Conference on Conceptual
Modelling, pages 37-48, Dunedin, New Zealand. Australian Computer Society.

Cappiello, C., Comuzzi, M., Mussi, E., and Pernici, B. (2005). Context management
for adaptive information systems. In In Proc. of Int. Workshop on Context for
Web Services (CWS), Paris, France.

106 S. Modafferi, B. Benatallah, F. Casati, and B. Pernici

Capra, L., Emmerich, W., and Mascolo, C. (2003). Carisma: Context-aware reflec-
tive middleware system for mobile applications. IEEE Transactions on Software
Engineering, 29(10):929-944.

Casati, F., Ceri, S., Pernici, B., and Pozzi, G. (1998). Workflow evolution. Data Knowl.
Eng., 24(3):211-238.

Casati, F. and Shan, M. (2001). Dynamic and adaptive composition of e-services.
Information System, 26(3):143-163.

Chakraborty, D. and Lei, H. (2004). Pervasive enablement of business processes. In
Proceedings of the Second IEEE Annual Conference on Pervasive Computing and
Communications (PERCOM), Orlando, (F1), USA.

Charfi, A. and Mezini, M. (2004). Aspect-oriented web service composition with
AO4BPEL. In Proc. of European Conference on web Service, (ECOWS), pages
168-182, Erfurt, Germany. Springer.

Dey, A. (2001). Understanding and using context. Personal Ubiquitous Computing,
5(1):4-7.

Dey, A. and Abowd, G. (2001). A conceptual framework and a toolkit for supporting
the rapid prototyping of context-aware applications. Human-Computer Interaction
Journal, 26(2-4):97-166.

Grefen, P., Pernici, B., and (Eds), G. S. (1999). Database Support for Workflow Man-
agement - The WIDE Project. Kluwer Academic Publishers.

Long, Y., Lam, H., and Su, S. (2004). Adaptive grid service flow management: Frame-
work and model. In Proc. of JEREE Int. Conf. Web Services (ICWS), pages 558-565,
San Diego, Ca, USA.

Miiller, R., Greiner, U., and Rahm, II. (2004). AGENTWORK: A workflow-system
supporting rule-based workflow adaptation. Data and Knowledge Engineering.
Patil, A., Oundhakar, S., Sheth, A., and Verma, K. (2004). Meteor-S web-service
annotation framework. In Proc. of Int. Conf. WWW, pages 553-562, New York,

NY, USA.

Reichert, M., Rinderle, S., and Dadam, P. (2003). ADEPT workflow management
system. In Proc. of Int. Conf on Business Process Management BPM, pages 370-
379, Eindhoven, The Netherlands. Springer.

Roman, G., Picco, G., and Murphy, A. (2000). Software engineering for mobility: a
roadmap. In In proc. of Inter. Conf. on Software Engineering (ICSE) - Future of
SE Track, pages 241-258, Limerick, Ireland.

Shan, E., Casati, F., and Dayal, U. (2005). Adaptive process management. to appear
in Int. Journal on Business Process Management.

Sheng, Q., Benatallah, B., Maamar, Z., Dumas, M., and Ngu, A. (2004). Enabling
Personalized Composition and Adaptive Provisioning of Web Services. In Proc. of
Int. Conf. on Advanced Information Systems Engineering (CAiSE), pages 322-337,
Riga, Latvia. Springer.

Zariskas, V., Papatzanis, G., and Stephanidis, C. (2001). An architecture for a self-
adapting information system for tourists. In Proc. of the Workshop on Multiple
User Interfaces over the Internet: Engineering and Applications Trends (in con-
Junction with HCI-THM’), Lille, France.

