TOWARDS A SERVICE-ORIENTED

ARCHITECTURE
FOR MOBILE INFORMATION SYSTEMS

K. Rehrl, M. Bortenschlager, S. Reich, H. Rieser, R. Westenthaler
Salzburg Research, Jakob-Haringer Strasse 5, 5020 Salzburg, Austria

Abstract: Although hardware and networking infrastructures have evolved over the
years and people are able to connect their devices to mobile networks and
exchange information, we argue that the missing glue to enable the true
potential of mobile information systems lies in the seamless integration of
wireless infrastructures with existing wired infrastructures. In our paper, we
present the service-oriented middleware Asomnia, which adapts traditional
service-oriented concepts in order to cope with requirements arising from
mobile computing challenges.

Key words: service-oriented architecture; mobile service environment.

1. INTRODUCTION

With the emergence of mobile information technologies, we are
continuously heading towards Mark Weiser’s vision of ubiquitous
computing (Weiser, 1991). Mobile end user devices and wireless connection
technologies allow for an anytime, anywhere vision (Kleinrock, 1996) and
recent developments (Ferscha and Vogl, 2002; Garlan et al., 2002; Strang,
2003; Waldo, 1999) show remarkable approaches towards mobile
computing. However, these developments often face the problem to strive
towards mobility in a rather isolated way. Mobile technologies are exploited
in order to achieve similar functionality as in wired infrastructures, although
capabilities of mobile devices or wireless connection technologies are rather
limited and the limitations are not considered to disappear in the upcoming
years. Thus we argue, that mobile information systems only can reach their
expected advantages and user acceptance trough integration with existing

38 K. Rehrl, M. Bortenschlager, S. Reich, H. Rieser, R. Westenthaler

wired infrastructures, i.e. the full value of mobile computing can only be
gained by making use of the advantages of a wired infrastructure such as
reliability, availability, bandwidth, richness in capabilities in conjunction
with the benefits of wireless technologies such as mobility, ad-hoc
connectivity or context awareness (Banavar et al., 2000; Banavar and
Bemstein, 2002; Raatikainen et al., 2002).

In this paper we argue for a service-oriented middleware (SOM) called
Asomnia (A Service-Oriented Middleware for ambieM nformation Access)
as an approach for bridging the gap between the wired and wireless world.
The paper starts with an overview of the main concepts and characteristics of
existing service-oriented architectures (Section 2). In Section 3 we continue
with a discussion on the characteristics considering pervasiveness and we
state requirements for pervasive service-oriented architectures. Section 4
describes the architecture of Asomnia and in Section 5 we show two
example applications. Section 6 gives an overview of related work and
compares existing systems. We finish with a summary and conclusions
(Section 7).

2. CHARACTERISTICS OF SERVICE-ORIENTED
ARCHITECTURES

In order to describe requirements concerning service-oriented
architectures for mobile information systems, in this section we first want to
give an overview of characteristics of existing service-oriented architectures.
(Bieber and Carpenter, 2001; McGovern et al., 2003; Strang, 2003) describe
that services and service-oriented architectures deal with the issue of
designing and building systems by using heterogeneous network addressable
software components. Thus, service-oriented architectures are architectures
that can be characterised by certain properties like being built of loosely
coupled components or allowing for broad interoperability. Looking at the
historical evolution, the term “service” has been used in many different
architectures reaching from transaction monitors in the early 1990s to
today’s client-server architectures and web service architectures. Following
the evolution process, service-oriented architectures have reached a degree
of development where the basic concepts have been widely accepted and a
set of properties for each concept has been defined to provide a more
detailed characterisation of these architectures.

Typically, a service-oriented architecture consists of the following main
concepts or any derivations of these (Bieber and Carpenter, 2001; Hashimi,
2003; Pallos, 2001; McGovern et al., 2003; Newmarch, 2000): Service
components (services), Service contracts (interfaces), Service containers

Towards A Service-Oriented Architechture 39

(contexts), Service connectors (transports), Service discovery
(registries).

Service Components or simply services are defined by network
addressable software components. One characteristic, that is still open in
service-oriented architectures, is the granularity of these service
components. Fine-grained or micro (Strang, 2003) service components have
the advantage to allow for improved reusability because of the atomic
nature, but suffer from the disadvantage of being difficult to organise.
Coarse-grained or macro services provide good encapsulation of
functionality (e.g. information hiding), but are limited in their reusability.
Hence, one trend in the conception of service components is to make the
service components adaptable, which means that services can either be used
in fine-grained or coarse-grained manner. Another important characteristic is
the mobility and on-the-fly deployment of service components (Waldo,
1999), which also has an impact on the dynamic nature of applications built
on the service components. Technically, the mobility of service components
has been enabled with the advent of mobile code techniques (Gosling et al.,
1996; Meijer and Miller, 2001). Another widely adopted characteristic is the
location transparency of service components (Foster et al., 2002), which
allows for a location independent service provision and hence assists the
virtualisation of resources (Kagal et al., 2001).

One characteristic concerning Service Contracts or Interfaces is
whether the service contract is public or published (Fowler, 2002). Typical
representatives for architectures with published contracts are CORBA
(OMG, 1991, JiniWaldo, 1999 or Web Services W3C, 2002), public service
contracts are often used together with message or event-based systems like
Hermes (Pietzuch and Bacon, 2002). Another characteristic of service
contracts is how the contract is described (e.g. the description language used
for the interface). Examples are the IDL of CORBA, Java interfaces used by
Jini or WSDL used by Web Services. The choice of description language has
great impact on interoperability issues of the architecture.

Service Containers deal with the issue of providing a common
execution software environment for service components in order to achieve a
high degree of modularity. Service containers can differ in the execution
mode for services, meaning that execution of a single service as well as
execution of multi services within one container is possible. We characterise
containers by their execution modes as single service containers and multi
services containers.

Service Connectors are used for exchanging messages between service
components (Hashimi, 2003; Pallos, 2001. According to Stevens, 2002),
interoperability is one of the crucial characteristics of service-oriented
architectures. Beside the definition of universal interfaces, interoperability
can be reached by choosing flexible service connectors. Service connectors
are typically capable of various transport protocols and payload formats for

40 K. Rehrl, M. Bortenschlager, S. Reich, H. Rieser, R. Westenthaler

messages (Bieber and Carpenter, 2001; Stevens, 2002). Thus, we consider
the capability for various transport protocols and various payload formats as
a main characteristic for service-oriented architectures.

Service Discovery is another important concept for service-oriented
architectures and as shown in (Bettstetter and Renner, 2000), various
approaches exist. One important characteristic of the different approaches is
the aspect of dynamic service discovery which is strongly related to the
spatial focus of the architecture. Wide area service-oriented architectures
like Web Services, CORBA or DCOM rather use more static discovery
mechanisms like UDDI or CORBA trader, local area service-oriented
architectures like Jini or MOCA (Beck et al., 1999) provide more dynamic
discovery mechanisms which allow for services appearing and disappearing
dynamically within little time periods. Another characteristic closely related
to the dynamic aspects of service discovery can be described by the
hierarchy of registries. Central registries imply a hierarchical network
structure, whereas distributed registries (Beck et al., 1999) provide a flat
network structure and are therefore also applicable to P2P networks. Closely
related to the distributed mode is the characteristic of autonomous discovery,
which describes whether the service-oriented architecture is dependent on
central registry services or individual services are able to find each other
autonomously.

In the next Section we will discuss adaptations of service-oriented
architectures for mobile information systems.

3. REQUIREMENTS FOR PERVASIVE SERVICE-
ORIENTED ARCHITECTURES

Service-oriented architectures have their origin in the 1990s and have
shown their power in wired infrastructures like LANs or WANs. However,
since the main characteristics are historically grown and mainly targeted to
wired environments, existing service-oriented frameworks often lack the
possibility to adapt to non-wired environments (OMG, 1991; Eddon and
Eddon, 1998). This is also true for a group of recent developments (van
Steen et al., 1999; Foster et al., 2002; W3C, 2002), especially designed for
the use in wide area network applications like the WWW. Another group of
more recent developments (Kindberg et al., 2002; Beck et al., 1999; Strang,
2003; Waldo, 1999) addresses aspects of mobility (Mattern and Sturm, 2003;
Satyanarayanan, 1996); however, the integration with existing
infrastructures and the adaptation of proven service-oriented concepts is
often neglected. Thus, in this Section we want to describe important
requirements addressing the necessary adaptations of service-oriented
middleware for the use in mobile information systems.

Towards A Service-Oriented Architechture 41

3.1 R1 Overcome Heterogeneity by using Adaptive SOM

Heterogeneity in pervasive environments can be manifold, it can result in
incompatibilities of devices, system platforms, communication networks or
applications. Today’s applications are typically developed for specific
device classes and system platforms (Saha and Mukherjee, 2003), which
leads to an increasing number of different versions of the same application.
Adaptive middleware can bridge the gap between heterogeneous devices,
system platforms and communication networks. As stated in Section 2,
service-oriented middleware is traditionally well suited to overcome
heterogeneity in wired networks and therefore can also solve incompatibility
issues in pervasive environments. Service containers will enable device and
platform portability, different service connectors allow for heterogeneous
communication networks and universal service contracts reduce
incompatibility issues between different applications. New challenges of
heterogeneity in pervasive environments arise from mobility issues (Banavar
and Bemnstein, 2002; Henricksen et al., 2001; Satyanarayanan, 1996) and
have to be addressed by the middleware.

3.2 R2 Integration of existing Computing Infrastructure
and Computing Components

By now, applications on mobile devices are poorly integrated with
existing computing infrastructures and computing components (Mattern and
Sturm, 2003. As stated in Banavar et al., 2000), a mobile device should be a
portal into an application or data space and not a repository for custom
software components. In order to generate real added value for mobile users,
existing computing infrastructure and computing components have to be
integrated smoothly into mobile environments. For instance, wrappers or
proxies can be used in order to integrate existing infrastructure for providing
added value. To combine services to a portal view, as stated in (Banavar et
al., 2000), is also a widely adopted user interface concept in service-oriented
environments.

3.3 R3 Service-Oriented Architectures should
incorporate a View on People, Places and Things

According to (Kindberg et al., 2002), nomadic people, places they enter
and computerised things in these places are crucial to mobile computing
environments and therefore have to be considered in the computing
infrastructures. Service-oriented architectures typically only deal with virtual
resources such as service components, which have no connection to the
physical world. To be adapted to pervasive environments, service

42 K. Rehrl, M. Bortenschlager, S. Reich, H. Rieser, R. Westenthaler

components and service containers have to be semantically modelled
(Banavar and Bernstein, 2002) under consideration of the hosting device
(things), the location of the hosting device (places) and the current user
(people). Thus, service provisioning has to come along with a conceptual
model for managing devices in certain locations, groupings of services on
devices or at locations and adoption to user profiles.

34 R4 Consideration of Mobility Aspects in Service-
Oriented Architectures

Traditional service-oriented architectures typically do not consider
mobility aspects. According to (Satyanarayanan, 2001), important issues
include mobile networking, mobile information access, support for adaptive
applications and location and context sensitivity. Service-oriented
architectures are able to provide assistance in mobile networking and mobile
information access through dynamic service discovery (Banavar et al., 2000)
and reaching a certain level of autonomy for devices (Strang, 2003)
(disconnected operation, caching of data). Support for adaptive applications
is provided through on-the-fly deployment, laissez-faire or lazy loading of
services (Satyanarayanan, 1996; Beck et al., 1999) and task-centred user
interface services (Banavar et al., 2000). Based on the characteristics and
requirements, in the following Sections, we give an overview on the system
architecture and example applications of Asomnia.

4. SYSTEM ARCHITECTURE

The main goal of the system architecture was to overcome the
deficiencies of existing service-oriented architectures as described above.

4.1 Network Structure

The network structure is designed as a 2- layered network scheme with
hierarchy, where the first layer, the global domain, basically represents a
highly reliable and available backbone managed by a central registry service
and providing basic system services. The global domain consists of one
central authority, a well known central registry, which hosts configuration
settings of devices and services in the backbone as well as the current sub
domains building up the second layer of the Asomnia network. Devices and
services in each sub domain have access to a local registry, which is either
well known by devices or found via network multicast. This allows mobile
devices to register in currently available sub domains and is therefore

Towards A Service-Oriented Architechture 43

considered as a crucial requirement for pervasive environments. Moreover,
the sub domains can be organised according to physical places, which allows
for inherent location awareness of devices (cf requirement R3). The 2-
layered hierarchy allows for consistency as well as scalability of the system
structure.

4.2 Service Discovery

The 2-layered hierarchical registry system allows for dynamic
registration of mobile devices. Based on the concept of local registries,
mobile devices and services in the sub domain can find currently available
devices and services in this domain (cf R4). Whereas typical service-
oriented architectures do not consider location and characteristics of hosting
devices, we consider (mobile) devices and places (sub domains) as important
to be modelled in a mobile environment (Kindberg et al., 2002) (cf R3). In
contrast to wired infrastructures, where devices are rather homogeneous and
differ only little, mobile computing focuses on a huge variety of
heterogeneous devices with greatly differing functionality. Moreover, an
increasing set of pervasive services will be closely tied to certain devices
(e.g. sensor devices) and places, where these devices are available. Thus, we
argue, that our registry system allows for location aware discovery of
devices as well as services virtually representing the functionality of these
devices (cf R3). Moreover, our hierarchical registry system allows to
combine the benefits of wired backbone infrastructures and wireless
infrastructures within one middleware (cf R2).

4.3 Service Containers

Service containers in Asomnia provide a basic runtime infrastructure for
services and fulfil the basic characteristics of portability and reuse of
common functionality. However, to go a bit further, Asomnia uses service
containers, which, depending on the executing device, are able to adapt to
different roles. On wired devices, the service container adapts to the role of a
single service container, i.e. each service on a device is running in its own
service container, whereas on wireless, less powerful devices, the container
adapts to the role of a multi service container (Fig. 1).

44 K. Rehrl, M. Bortenschlager, S. Reich, H. Rieser, R. Westenthaler

Mobils Device

Figure 1. Single Service Container and Multi Service Container

Local and remote communication is handled by a local service broker
called the ServiceCore. This approach ensures a maximum degree of
reliability in wired infrastructures and reduced resource consumption on less
powerful devices (cf R2, cf R4).

4.4 Devices and Service Components

Service components in Asomnia are typically rather coarse grained
software entities. However, in order to allow for reusability, we have
developed a concept for coarse grained services to be built of fine grained
functional units (FU) (Fig. 2).

Figure 2. The layered architecture consists of functional units (FU),
service components and the service container

Functional units are typically not visible from outside but are
encapsulated in the service component to follow object oriented principles.
New service components can be composed of a set of functional units at

Towards A Service-Oriented Architechture 45

design time, applications can be composed of service components at runtime

leading towards adaptive applications (cf R4).

To address the requirement R3, we not only focus on service
components, but also on modelling devices. Physical devices typically
provide a collection of services, utilising the device’s functionality. A device
together with the service components is registered in the registry system.
Thus, in order to deal with devices and services, any device needs to be
controlled by a controller service i.e. ServiceCore (Fig. 1). The ServiceCore
is the first service which is started for each device, and is used for
management functionality. This includes starting and stopping of services on
the device, registering the device at the registry system or maintaining the
leases (Waldo, 1999) for the device. Additionally, the ServiceCore is
responsible for remote communication, i.e. it is a kind of communication
broker for the device. Registering devices in addition to services and
providing one access point to the device has a few advantages:

o Easier management at the overlay network level (easier configuration of
network and devices)

e Fasier management at the network level (since all devices only
communicate via the port of the ServiceCore, only this port has to be
known to other devices and opened in the firewalls)

Reaching a certain degree of autonomy of devices (cf R4)

o Services have a strong relation to devices and thus can also be related to
places (cf R3).

4.5 Service Contracts

Asomnia uses a non-validated event exchange based on an XML-based
event hierarchy together with an event description similar to (Pietzuch and
Bacon, 2002). Currently we use the event hierarchy in a public way, future
developments will focus on establishing explicit semantics by using a
common ontology. Events can easily be serialised to messages and can be
delivered either synchronously or asynchronously, which enables store and
forward delivery upon network disconnection (cf R4).

4.6 Service Connectors

As described above, Asomnia uses event-based communication. Events
allow for efficient delivery of information to other services either
asynchronously or synchronously. Asynchronous event delivery is mostly
used on mobile devices, whereas on wired infrastructures, synchronous
delivery is the first choice due to the high level of availability and reliability
in case that sender an receiver are both online. For reliable asynchronous
communication on mobile devices we use store and forward delivery: For

46 K. Rehrl, M. Bortenschlager, S. Reich, H. Rieser, R. Westenthaler

network communication we use messages, which are events encoded
according to an exchangeable payload format (Formatter). The messages are
sent via exchangeable transport protocols (7ransport). Both concepts allow
for greater flexibility and are typically not provided by other service-oriented
systems like Jini or MOCA. In our approach, for example, the default
encoding for the wired environment may be XML, which allows for easier
interoperability. However, for mobile devices, the XML-conversion may be
to cumbersome, thus, an additional binary Formatter can be provided, which
allows for higher performance in event encoding.

To sum up, since payload format and transport protocols are
exchangeable, we are able to provide interoperability between heterogeneous
devices on the network layer (Bluetooth, WLAN, infrared connection) as
well as on the platform layer. It is possible with Asomnia to run each service
in a different platform even on the same device.

S. PROTOTYPE AND DEMONSTRATION

According to the system architecture described in the previous Section
we have implemented a prototype based on the .net Framework and the .net
Compact Framework. In our prototype application scenario, a user with a
PDA carries along a Powerpoint presentation and wants to take advantage of
an existing video beamer equipment in a meeting room for presentation (cf
R3). The user’s PDA has access to the Asomnia enabled environment and
after establishing a personal area network connection via Bluetooth or
WLAN, the device automatically finds the local Asomnia registry by IP-
multicast and starts to register itself. After the registration, the user is
informed about available devices and services and uses the presentation
control service running on the PDA in order to find the appropriate video
beamer device and the proxy service which gives access to the Powerpoint
application (cf R1). Upon connection to the service, the user starts uploading
the presentation to the beamer device for getting immediately access to the
slides from the PDA. During the presentation, the user can randomly jump to
the different slides and is able to fully control the presentation on the PDA.
If there would be a printer accessible from the computing environment, the
presentation control service on the PDA would adapt to the situation (cf R4)
and offer a possibility to print out slides. Due to the wireless connection of
the PDA and the integration with existing infrastructures (cf R2), the user
gets a feeling of pervasiveness and having control over the surrounding
environment.

Towards A Service-Oriented Architechture 47

6. RELATED WORK

Our approach towards a mobile service-oriented middleware shares
similarities with other work. In the following we will briefly highlight the
most relevant ones.

The main goal of the (Heywow framework Strang, 2003), developed by
the German Aerospace Center, is to provide location based information to
mobile users. Heywow focuses mainly on service discovery and service
description for services executed on mobile devices. Discovery and
execution take into account the users’ context. Asomnia differs from
Heywow in two main aspects. We use exchangeable service connectors, i.e.
transport protocols and payload formatters, since we argue, that HTTP
transport and XML-parsers cannot be assumed for all kinds of mobile
devices.

(Jini Waldo, 1999) provides a service oriented architecture for building
distributed systems. It is based on the distributed computing mechanisms of
sockets and remote method invocation (RMI). The intention is to offer a
network plug and work mechanism where new services can join a network
of other services and where service requestors can search for and use them
(Newmarch, 2000). In contrast to Asomnia, even local communication
between services is done via the lookup service (LUS) and therefore mobile
devices can not reach autonomy. Furthermore, Jini assumes a Java Virtual
Machine and provides only one type of service connectors, which results in
rather few possibilities to integrate mobile devices.

TheWeb Services protocols (W3C, 2002) allow software services in a
WWW environment to be deployed, discovered and accessed. Web Services
are well suited for wired environments, but due to their rather static nature
and resource consuming service containers less viable for low processing
power devices in pervasive scenarios. The registry used with Web-Services -
UDDI - is kind of static and not well suited for the dynamic requirements of
mobile systems.

The Open Grid Services Architecture (OGSA) (Foster et al., 2002) by the
Global Grid Forum builds on Web Services and provides a higher-level
concept of services for grid computing infrastructures. In Asomnia we make
use of plugable service connectors similar to the Web Services approach,
however, we use lightweight service containers and dynamic registries.

CoolTown (Kindberg et al., 2002) offers a web model for supporting
nomadic users and does this by tying web resources to physically present
objects. The project strongly emphasis on common standards, however, it
does not provide an architecture for a service-oriented middleware.

MOCA (Beck et al., 1999) provides a service framework that supports
the development and execution of applications with a special focus on
mobile computing devices. Basically, the concept is similar to Jini. The

48 K. Rehrl, M. Bortenschlager, S. Reich, H. Rieser, R. Westenthaler

service registry, however, is located and maintained at each participating
device, which results in more flexibility with respect to mobility and in
independence from a central entity. MOCA is fully implemented in Java and
each device requires a JVM to be able to participate, which both restrict this
framework regarding technology independence issues.

Some other systems or architectures influenced our work. The most
important ones are JXTA and Bluetooth. JXTA (Gong, 2001) is a standard
protocol set for a pure Peer-to-Peer (P2P) infrastructures. The mobile
extension of JXTA called JXME (JXTA, 2003) seems to be appropriate for
pervasive scenarios, however, due to the lack of central authorities in P2P
systems, administrative and configuration issues are more complex.
Bluetooth (Naveen and Yen, 2002) is a technology specification targeted to
establish a standard to interconnect devices with a special focus on mobile
devices. The Bluetooth stack spans a great variety of functionality ranging
from hardware issues like radio frequency (RF) and coding schemes, basic
software issues like addressing and network management, up to a
sophisticated service discovery mechanism called the Service Discovery
Protocol (SDP). Although SDP and service-oriented concepts are closely
related to our work, Bluetooth is a hardware oriented low level protocol and
thus considered to be rather an underlying technology compared to Asomnia.

A comparative overview of related work according to Section 2 is

provided in the characteristics matrix (Table 1).

Table 1. Characteristics matrix (- not supported, + basic support, ++ full support)
Heywow Jini OGSA CoolT. MOCA ASOMNIA

Components: Granularity + + ++ - + -
Components: Mobility + + - - + ++
Components: Transparency + +H o+ ++ + +
Contracts: Interoperability - + + - +
Contracts: Published - ++ ++ - + -
Containers: Portability - + ++ + + ++
Containers: Service execution + + na + + —+
Connectors: Protocols - - ++ - - ++
Connectors: Payload formats - - ++ - - ++
Service discovery: Dynamic ++ + - - ++ ++
Service discovery: Hierarchy ++ - + - - ++
Service discovery: Autonomy ++ - - - + +

7. SUMMARY AND CONCLUSION

In this paper we have argued that there is a growing need for seamless
integration of wireless and existing wired computing infrastructures.
Existing developments in service-oriented middleware have mainly focused

Towards A Service-Oriented Architechture 49

on characteristics important for wired infrastructures (e.g. taking advantage
of always available and reliable infrastructures) and do insufficiently cope
with the requirements arising from pervasiveness, such as dealing with
certain aspects of mobility (e.g. increasing heterogeneity and resource
poverty of mobile devices, location awareness or error-prone wireless
networks). To overcome these limitations, in our approach we propose a
service-oriented middleware targeted to adapt the historically grown and
well proven characteristics of service-oriented architectures in order to cope
with the forthcoming challenges of pervasive environments. Our architecture
addresses the differences of wired and wireless infrastructures using the
concept of adaptive service containers and hierarchical registries. In
conclusion, we believe that Asomnia provides a step towards a service-
oriented architecture for seamless integration of wireless and wired
computing infrastructures.

REFERENCES

Banavar, G., et.al. (2000). Challenges: an application model for pervasive computing. In
Proceedings of the 6th annual international conference on Mobile computing and
networking, pages 266—274. ACM Press.

Banavar, G. and Bernstein, A. (2002). Software infrastructure and design challenges for
ubiquitous computing applications. Communications of the ACM, 45(12):92-96.

Beck, J., Gefflaut, A., and Islam, N. (1999). Moca: a service framework for mobile computing
devices. In Proceedings of the 1st ACM international workshop on Data engineering for
wireless and mobile access, pages pp. 62—68, Seattle, Washington, United States. ACM.

Bettstetter, C. and Renner, C. (2000). A comparison of service discovery protocols and
implementation of the service location protocol. In Proceedings of Sixth EUNICE Open
European Summer School - EUNICE 2000, Twente, Nederlands.

Bieber, G. and Carpenter, J. (2001). Introduction to service-oriented programming (rev. 2.1).

Eddon, G. and Eddon, H. (1998). Inside Distributed Com. Microsoft Press.

Ferscha, A. and Vogl, S. (2002). Pervasive web access via public communication walls. In
Pervasive Computing, Springer LNCS 2414, pages pp. 84-97, Zurich, Switzerland.

Foster, 1., Kesselman, C., Nick, J. M., and Tuecke, S. (2002). The physiology of the grid: An
open grid services architecture for distributed systems integration. Draft 5, Mathematics
and Computer Science Division, Argonne National Laboratory and Department of
Computer Science, University of Chicago and Information Sciences Institute, University
of Southern California and IBM Corporation.

Fowler, M. (2002). Public versus published interfaces. IEEE Sofiware, Vol. 19(2):18-19.

Garlan, D., Siewiorek, D., Smailagic, A., and Steenkiste, P. (2002). Project aura: Toward
distraction -free pervasive computing. IEEE Pervasive Computing, 4:pp. 22-31.

Gong, L. (2001). Project JXTA: A Technology Overview.
http://www.jxta.org/project/www/docs/jxtaview 01nov02.pdf.

Gosling, J., et.al. (1996). The Java Language Specification. Addison-Wesley.

Hashimi, S. (2003). Service-oriented architecture explained. O 'Reilly ONDotnet.com.

Henricksen, K., Indulska, J., and Rakotonirainy, A. (2001). Infrastructure for pervasive
computing: Challenges. In GI Jahrestagung Vienna, pages 214-222.

JXTA, P. (2003). JXTA for]2ME. http://jxme.jxta.org.

50 K. Rehrl, M. Bortenschlager, S. Reich, H. Rieser, R. Westenthaler

Kagal, L., Korolev, V., Chen, H., Joshi, A., and Finin, T. (2001). Centaurus: A framework for
intelligent services in a mobile environment. In Proceedings of the International
Workshop on Smart Appliances and Wearable Computing (IWSAWC).

Kindberg, T., Barton, J. J., Morgan, J., Becker, G., Caswell, D., Debaty, P., Gopal, G., Frid,
M., Krishnan, V., Morris, H., Schettino, J., Serra, B., and Spasojevic, M. (2002). People,
places, things: Web presence for the real world. In MONET 7(5), pages 365-376.

Kleinrock, L. (1996). Nomadicity: Anytime, anywhere in a disconnected world. In Mobile
Networks and Applications 1, pages 351 —357.

Mattern, F. and Sturm, P. (2003). From distributed systems to ubiquitous computing - the
state of the art, trends, and prospects of future networked systems. In Klaus Irmscher, K.-
P. F. E,, editor, Proceedings of KIVS 2003, pages pp. 3—25. Springer-Verlag.

McGovern, J., Tyagi, S., Stevens, M., and Mathew, S. (2003). Java Web Services
Architecture. Morgan Kaufmann.

Meijer, E. and Miller, J. (2001). Technical overview of the common language runtime.
MSDN.

Naveen, E. and Yen, D. C. (2002). Bluetooth Technology: A strategic Analysis of its Role in
global 3G wireless Communication Era. Computing Standards and Interfaces, 24

Newmarch, J. (2000). 4 Programmer’s Guide to Jini Technology. Springer-Verlag.

OMG (1991). The common object request broker: Architecture and specification. Technical
report, Object Management Group (OMG), OMG Document Number 91.12.1

Pallos, M. S. (2001). Service-oriented architecture: A primer. e41 Journal, pages 32-35.

Pietzuch, P. R. and Bacon, J. M. (2002). Hermes: A distributed event-based middleware
architecture. In Proceedings of the Ist International Workshop on Distributed Event-Based
Systems (DEBS’02).

Raatikainen, K., Christensen, H. B., and Nakajima, T. (2002). Application requirements for
middleware for mobile and pervasive systems. ACM SIGMOBILE Mobile Computing and
Communications Review, 6(4):16-24.

Saha, D. and Mukherjee, A. (2003). Pervasive computing: A paradigm for the 21st century.
IEEE Pervasive Computing, pages pp. 25-31.

Satyanarayanan, M. (1996). Fundamental challenges in mobile computing. In Proceedings of
the 15th annual ACM symposium on Principles of distributed computing, pages 1-7. ACM
Press.

Satyanarayanan, M. (2001). Pervasive computing: Vision and challenges. IEEE Personal
Communications.

Stevens, M. (2002). Service-oriented architecture introduction. developer.com.

Strang, T. (2003). Towards autonomous context-aware services for smart mobile devices. In
Chen, M.-S., editor, MDM 2003 (4th International Conference on Mobile Data
Management), volume LNCS 2574, pages pp. 279-292, Melbourne, Australia. Springer.

van Steen, M., Homburg, P., and Tanenbaum, A. S. (1999). Globe: a wide area distributed
system. IEEE Concurrency, 7T:pp. 70-78.

W3C (2002). Web services activity. http://www.w3.0rg/2002/ws/.

Waldo, J. (1999). Jini technology architectural overview. Technical report, SunMicrosystems,
901 San Antonio Road, Palo Alto, CA 94303 U.S.A. Available as http://www.sun.com/
jini/whitepapers/architecture.html.

Weiser, M. (1991). The computer for the 21st century. Scientific American, 265(3):66-75.

