
A WSAN Solution for Irrigation Control from a Model 
Driven Perspective 

Fernando Losilla, Pedro Sánchez, Cristina Vicente-Chicote, Bárbara Álvarez, 
Andrés Iborra 

fernando.losilla@upct.es 
Universidad Politécnica de Cartagena (Spain) 

Abstract. Wireless Sensor and Actor Networks (WSAN) constitute a growing 
research field in several engineering areas. One very interesting domain of 
WSAN application is precision agriculture, and in particular, the automatic 
control of tree irrigation depending on sap flow levels. Nowadays, the software 
development process followed in these kinds of applications is largely 
dependent on the platform where the final implementation is done. 
Consequently, commonly desired attributes such as flexibility, reuse and 
evolution are relegated to a second level of priority. Nevertheless, the growing 
interest in WSAN has been led to advances from different points of view: new 
application domains, new middleware, new simulation environments, and so 
on. In spite of all these advances, WSAN development is today needed of 
concrete mechanisms that make easy the software generation process. This 
paper summarizes our contribution in this field from two points of view: as an 
agronomic solution and as new opportunities for affording the construction of 
these systems taking into consideration the most recent advances in software 
engineering.1. 

   Keywords:  Model driven approach, Domain Specific Languages, Precision 
Agriculture. 

1. Introduction 

Recent technological advances have led to the emergence of wireless sensor and actor 
networks (WSAN). These networks are able to observe the physical world, process 
data, make decisions on the basis of these observations, and carry out concrete 
operations on the environment.  

WSAN applications constitute a new way of acquiring data and controlling the 
physical world, and therefore they are very useful for developing a broad range of 

                                                           
1 This work was partially supported by the Spanish CICYT project MEDWSA, reference 

TIC2006-15175-C05-02 and the Regional Government of Murcia Seneca Program, reference 
02998-PI-05. 
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applications such as [1]: environmental monitoring, health control by tele-medicine, 
precision agriculture, military operations, transport tracking, etc. 

Besides, model driven software development (also known as model driven 
engineering or MDE [2][3]) solves the common problem of the strong dependence of 
the software process on the final execution platforms. The MDE approach focuses on 
the use of models through which software applications can be described while taking 
independent platform concepts into account and promoting the definition of semi-
automated transformation mechanisms from those models in final code. 

These approaches to the development of WSAN based applications entail the 
following research activities: (1) to adopt and apply a method that guides the domain 
engineering process from which the concrete product line study will be derived; (2) to 
define a domain-specific language with which models can be produced by 
representation of concepts from that domain; (3) to select an execution infrastructure-
independent language with which all architectural design decisions for the product 
family can be represented; (4) to define the transformations between models taking 
into account the meta-models (that is, models that define a language for expressing 
other models) identified for each language utilized in the process; and (5) to develop  
tools which provides support for the whole process.  

In this paper we describe with detail the adopted solution for a well know problem 
of precision agriculture: control irrigation by measuring the tree sap flow. This 
example has allowed us to put in practice the languages, tools and developed software 
artefacts.  

For a good understanding of the work, we first describe the case study in section 2. 
Section 3 gives an introduction to the concepts that could enhance the development of 
WSAN applications: the model driven software development perspective. Sections 4 
and 5 present the case study solution from a model management point of view. 
Section 6 gives the related work and section 7 conclusions and future works. 

2. Case study description 

The MITRA test bed consists of thirty TinyOS-based nodes (see Figure 1) deployed 
in an almond orchard located in the region of Murcia (southeast of Spain), where the 
climate is semiarid Mediterranean. Given the shortage of water in this region, the 
prime objective of the system is to regulate tree irrigation according to water stress, 
that is, to water the trees only when required. Water stress is measured using the heat 
pulse compensation method [4] which consists in generating a pulse of heat 
throughout an axial line of the tree trunk using a resistor element. Then the 
temperature evolution is measured above and below this line to determine the sap 
flow and hence the water stress.  

Figure 2 shows the hardware architecture of these MITRA nodes. The 
microcontroller, together with a driver, generates an electrical pulse and applies it on 
the heater. The heater is a very thin resistor made up of a nicron wire inside a 2 mm 
steel tube. To calculate the sap flow, it is necessary to measure the temperature at 
different depths of the tree trunk. To get this information, MITRA nodes provide two 
temperature sensors. In addition, MITRA nodes are equipped with a port for 
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connecting up to eight additional sensors (e.g. luminosity, temperature, humidity of 
the soil, and air pressure).  

The microcontroller processes the signals provided by the temperature sensors in 
order to calculate the sap flow. This datum is reported via WiFi every three hours (for 
energy-efficiency considerations) to a simple PC, which controls the irrigation 
process on the basis of the information received from all the deployed MITRA nodes.  

When the PC detects that some water is needed, it sends a “start irrigation” order to 
the watering system via WiFi, and conversely, when it detects that the trees are 
sufficiently watered, it sends a “stop irrigation” order. The section 4 explains how the 
MITRA system was implemented using the tools and the methodology presented in 
this paper. 

 
Figure 1: The MITRA node. 
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Figure 2: MITRA node hardware architecture. 

3. A model driven perspective for developing WSAN applications 

Model Driven Engineering (MDE) promotes software development centred on the 
concept of a systematic use of a model. In this approach, models play the most 
important role because they are the chief artefact guiding not only the development 
and documentation of the software but also its management and evolution. In MDE 
[2] models are created on the basis of formal meta-models which describe 
complementary views of a system at different levels of abstraction.  

In MDE, software can be described by means of models at high levels of 
abstraction, and then these models can be compiled into other representations closer 
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to the implementation level (the executable code) by applying predefined 
transformations. Because formal descriptions of the meta-models are used, both the 
building of models and the transformations between them can be done using tools that 
raise the level of software process automation. 

11

Domain specific Languages
and UML behaviour diagrams.

22

The architecture: components, 
relationships and conections. 

33

Implementation using
programming languages

From domain models
to component models.

From architectural descriptions
to executable solutions.

 
Figure 3: Model Driven Engineering using MDA abstraction levels. 

 
The MDA (Model Driven Architecture) proposal [5] from the OMG (Object 
Management Group) fits the MDE perspective. MDA proposes three abstraction 
levels for models of a system (see Figure 3). At the highest level, the platform-
independent model (PIM) gives a platform-independent view of the system. This level 
can be described using for example domain specific languages. The successive lower 
levels capture platform-dependent features (PSMs).  

These PSMs may or may not correspond directly to the code level. MDA promotes 
the description of software by means of PIM models unrelated to any concrete 
technology. In a subsequent step, the user selects the final implementation platform to 
which the upper models will be converted. MDA proposes a combination of the above 
approach with standards such as MOF (MetaObject Facility), UML (Unified 
Modelling Language) and XML (Extensible Markup Language) in order to achieve 
interoperability among the tools involved in the software development process. The 
MOF specification defines a language and a set of standard interfaces that can be used 
to define and manipulate a set of meta-models and their corresponding models.  

There are several commercial tools for creating, accessing and modifying these 
meta-models through MOF interfaces. The most representative is the Eclipse 
Modelling Framework, which has been the selected tool for supporting our work. 



A WSAN Solution for Irrigation Control from a Model Driven Perspective      41 

A Domain Specific Language (DSL) [6] is a language that offers very good 
expressive power to capture the requirements of a particular domain at a PIM level. 
There are many advantages to considering languages of this kind. A DSL provides 
concrete abstractions to represent concepts from the application domain and offers a 
natural syntax notation and mechanisms for optimization and error checking.  

One of the key factors when defining a DSL is its ability to provide users with a set 
of modelling primitives very close to the domain abstractions. The DSL we have 
defined provides concrete and precise constructs for defining WSAN applications on 
an independent implementation platform such as MDE promotes.  

This WSAN-DSL by the authors (an example in next section) provides constructs 
for specifying both structure and dynamics of WSAN applications at two different 
levels: node level and region level. It considers a WSAN as an aggregation of regions 
where a region is seen as a set of atomic nodes and sub-regions with similar 
characteristics.  

The use of regions allows for the building of heterogeneous WSANs where not all 
nodes have to implement the same functional subsystems (i.e. localization, routing 
and other specialized processing), but they can be grouped into regions according to 
what subsystems they implement and how they do it. 

Figure 3 summarizes the approach adopted. The picture depicts the separation 
between PIM and PSM at different abstraction levels. Models represented at a certain 
level are then transformed into models at lower abstraction levels by means of tools 
which supply the process with automatic support.  

Each level contains a representation of the system using a meta-model that provides 
formal support for a well-defined modelling or implementation language (model 
management perspective). Next section presents the obtained models for the case 
study taking into account the referred software artefacts. 

4. General description of the solution 

The first step in the proposed methodology for WSAN application development is to 
build a model of the target system using the WSAN DSL. This high level of 
abstraction modelling language (meta-model) provides all the concepts and 
relationships commonly used for specifying WSAN applications.  

As noted earlier, a new graphical modelling editor which allows WSAN domain 
experts to graphically describe the structure and the behaviour of their systems has 
been developed on the basis of this WSAN meta-model. The MITRA system model 
depicted using this DSL is shown in Figure 4. Two different regions have been 
defined in this model. The first region includes two node groups, one representing the 
MITRA nodes deployed in the almond orchard (SAP Monitoring NodeGroup) and 
another representing the irrigation control node (NodeGroup containing only one 
node). The second region contains only one NodeGroup with a single node (Sink 
node) with the responsibility of transferring data between the WSAN and a computer. 

The behaviour of the three different types of nodes (node groups) defined in the 
model is specified following a three-step process: (1) select the sensors to be read, (2) 
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select the node activities (from those provided by the WSAN DSL), and (3) link all 
these elements together according to the rules specified in the meta-model.  

As can readily be appreciated from the figure, the behaviour of the SAP Monitoring 
NodeGroup contains two entirely uncoupled activity sets, one describing the sensing 
loop and another describing how the collected data are sent to the Sink NodeGroup 
via WiFi. The model transformation which translates WSAN DSL models into 
generic component models uses this information to place uncoupled activity sets 
(detected in the WSAN DSL model) into orthogonal state regions in the transformed 
generic component model (Figure 3, step 2).  

Finally, the messages required to model component communication are also 
inferred. For instance, the MITRA system requires two different messages, one 
containing the sap values sent from the SAP Monitoring NodeGroup to the sink node 
and another containing the irrigation orders the PC sends to the Irrigation Control 
NodeGroup.  
Once the generic component model has been obtained from the initial specification, a 
new model-to-model transformation is performed to obtain an equivalent NesC 
component model. This transformation identifies certain component patterns in the 
original model and creates the corresponding NesC components, configurations 
(complex components), and interfaces. The resulting Nesc model is then 
automatically transformed into NesC code, using the MOFScript model-to-text 
transformation implemented to support the last step of the proposed methodology.  

The final application that emerges at the end of this process has been tested under 
real conditions (in an almond orchard belonging to the School of Agricultural 
Engineering of the Technical University of Cartagena, Spain), with successful results. 
Obviously, the final application code is still far from being optimized since the tools, 
particularly those relating to model transformations, still need improving. However, 
this case study has proven the viability of the approach, demonstrating a significant 
reduction in the effort required for development. 
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Figure 4: MITRA System model depicted using the WSAN DSL graphical modelling 
editor. 
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5. More detail about the transformation process 

Figure 4 shows a DSL-description of the functionality of the case study. This 
representation needs to be translated into a more detailed one that takes into account 
the services provided and required by each device included in the description. An 
analogous description of part of the system is given in Figure 5, where an UML 
Activity Diagram has been used.  

Following the UML notation, sent and waited events, and clocks are explicitly 
represented. It has been considered a unique super-state for the motes which includes 
two concurrent activity descriptions (left side for sap flow monitoring and right side 
for periodical sending of data with radio).  

It is possible to deduce the component structure described in Figure 6 by 
considering the set of components and their interfaces. Both Figure 5 and Figure 6 are 
the input for the compilation process to NesC code. Figure 7 gives a simplified 
instance of the final code. Some rules need to be considered when generating this 
code could be the followings: 

 
1. Each referred clock in Figure 5 implies a basic mechanism of starting (for 

instance, code #29) and attending the associated timeout event (code #53). 
2. The sequence described in the activity diagram is followed in the 

implementation. For example, Sensor.GetSAP1() is done after receiving the 
end of Timer2. In consequence, the command must be called within the 
handling of the event (code #43). 

3. It is necessary to distinguish different handlers for the event 
Sensor_Receive_Data with a local variable (code #49...#51). 

4. Commands init() and start() must include the initialization of components. 
 

Although we are aware of the difficulty of generating the full code needed to 
compile the application, however a great percent of code can be deduced both from 
activity diagrams and components descriptions. Good results can be obtained if 
appropriate rules are considered in the tool implementation and there exists well 
documented repositories of components. In this sense, we follow working on the 
mapping between the different levels of abstraction of the MDE perspective. 



A WSAN Solution for Irrigation Control from a Model Driven Perspective      45 

After 45’

After 15’

<<Store>>
data1

After 15’

<<Store>>
data2

Initialize cycle

After 180’

<<Store>>
data1

<<Store>>
data2

SAP_Monitoring_NodeGroup:WorkingSAP_Monitoring_NodeGroup:Working

Sensor.GetSAP1

Sensor get SAP2Sensor Receive(data1)

SensorSend Hot Pulse

Sensor Receive(data2)

Comm Send Radio

 
Figure 5: The MITRA System model represented as UML Activity Diagrams inside 

the state 'working' of the node SAP_Monitoring_NodeGroup. 
 

 
Figure 6. NesC Components and their interconnections. 

 
1. includes MitraMsg; 
2. module MitraM  
3. {uses { 
4.  interface StdControl as CommControl; 
5.  interface SendMsg as Send; 
6.  interface Timer as Timer1; // First 45 minutes clock 
7.  interface Timer as Timer2; // First 15 minutes clock 
8.  interface Timer as Timer3; // Second 15 minutes clock3  
9.  interface Timer as Timer4; // three hours clock 
10. interface StdControl as TimerControl; 
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11. interface ADC; 
12. interface StdControl as ADCControl;} 
13. provides {interface StdControl;} 
14. } 
15. implementation 
16. {TOS_Msg msg_global; 
17.  uint8_t num_reading=1; uint16_t reading1, reading2; // sap flow 
values 
18. command result_t StdControl.init() { 
19.    call ADCControl.init();  
20.    call TimerControl.init(); 
21.    call CommControl.init(); 
22.    return SUCCESS; } 
23. void initialize_cycle(){ 
24. call Timer1.start(TIMER_ONE_SHOT, 1024*60*45); // 45 minutes} 
25. command result_t StdControl.start() { 
26.    call ADCControl.start(); 
27.    call TimerControl.start(); 
28.    call CommControl.start();  
29.    call Timer4.start(TIMER_REPEAT, 1024*60*60*3); //3 hours 
30.    initialize_cycle();     
31.    return SUCCESS; } 
32.      
33. command result_t StdControl.stop() { 
34.    call ADCControl.stop(); call CommControl.stop(); 
35.    call Timer1.stop();  call Timer2.stop(); 
36.    call Timer3.stop(); call Timer4.stop(); 
37.    return SUCCESS;} 
38. event result_t Timer1.fired() {  
39.     SENSOR_SEND_PULSE();  
40.     call Timer2.start(TIMER_ONE_SHOT, 1024*60*15); 
41.     return SUCCESS;} 
42. event result_t Timer2.fired() { 
43.     call ADC.getData();  // Sensor.Getsap1() 
44.     return SUCCESS;} 
45. event result_t Timer3.fired() { 
46.    call ADC.getData();  // Sensor.Getsap2() 
47.     return SUCCESS;} 
48. async event result_t ADC.dataReady(uint16_t sapFlow) { 
49.      if(num_reading==1) {reading1=sapFlow; (num_reading++%2)+1; 
50.       call Timer3.start(TIMER_ONE_SHOT, 1024*60*15);} 
51.      elsif(num_reading==2) {reading2=sapFlow; initialize_cycle();} 
52.      return SUCCESS;} 
53. event result_t Timer4.fired(){ 
54.    struct MitraMsg *message = (struct MitraMsg *) msg_global.data; 
55.    message->RAM1 = reading1; message->RAM2 = reading2; 
56.    call Send.send(TOS_BCAST_ADDR, sizeof(struct MitraMsg),  
57.  &msg_global)); 
58.    return SUCCESS;} 
59. event result_t Send.sendDone(TOS_MsgPtr msg, result_t success){} 
60.} 

Figure 7. Code for the MITRA Application 
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6. Related work  

The foregoing sections showed the benefits of applying a model-driven approach to 
WSAN application development. The results have been demonstrated by considering 
a precision agriculture case study. Similar experiments have demonstrated its viability 
for other reactive systems. But few work-patterns related to this topic have been 
found in the WSAN domain and none of them use MOF as the underlying substrate. 
GRATIS II [7], built with the Generic Modelling Environment (GME) meta-
modelling tool, constitutes a very well known approximation to the problem, but it 
does not cover the whole development process. It uses a NesC meta-model and can be 
used to generate TinyOS configuration components from graphical models and vice 
versa. ATaG [8], also developed with GME, offers a data driven approach for end-to-
end application development. In order to model an application, a set of abstract tasks 
representing types of information processing functions in the system is used along 
with a set of abstract data items that represent types of information exchanged 
between abstract tasks. The programmer must supply the code for the implementation 
of each abstract task and each abstract item of data, but no mechanism is supplied to 
model this behaviour. Another environment which uses meta-modelling techniques is 
CADENA [9]. With CADENA, software can be generated not only for WSAN but for 
any type of application with a component-based architecture, but this generality 
makes the WSAN software development process excessively complex since domain 
particular concepts are not used in the functionality description. 
The work presented in this paper addresses the creation of a new environment to 
support the whole WSAN software development process. The resulting environment 
aims to greatly simplify the construction of applications, making it possible to 
describe network node behaviour with a small set of concepts relating to the WSAN 
domain while hiding implementation details from the developer. The application 
description is currently transformed to TinyOS components in NesC language, but a 
transformation to other node-level programming environments may be possible 
provided that they offer a textual or MOF-compliant language for application 
specification and that they offer an event-driven or thread-based programming model, 
scheduling schemes, fault tolerance, etc.  

7. Summary and future work 

This paper has introduced a new model driven method for the development of WSAN 
applications that allows for the use of a DSL, meta-models and transformations 
between models. The description of our results has been supported by a WSAN case 
study. On the one hand MDE offers automation of the development process and 
platform independence, while on the other hand the study of the WSAN domain 
approach offers the best possible reuse in software development. Families of software 
products are organized around an architecture that utilizes the common features of 
their members and hence offers a set of reusable artefacts. Moreover, a model-driven 
software development process focuses on defining models independently from 
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platforms; it also focuses to a greater or lesser extent on the automation of model 
compilation, and finally on code generation. 
Most domain engineering proposals place a great deal of stress on modelling activities 
as a means of developing product families. The key idea of domain specific languages 
is to be able to represent the concepts of the application domain directly. In this sense 
domain specific languages have several advantages over other kinds of general-
purpose languages, basically because [6] the constructs are closely related to the 
concepts of the domain, and these languages usually provide a graphic notation and 
specialized tools (editors, optimizers, etc.) which gather a great deal of information 
from the domain. They also provide the opportunity to automate much of the process. 
 
This makes for considerable improvement in the development of reactive systems, 
particularly in the domain of WSAN applications. We follow working on the 
implementation of the mentioned tools, the clear definition of transformation rules 
between models, the demonstration of MDE benefits (such as the independence from 
the final execution infrastructure) and, finally, the definition of metrics to know the 
WSAN application time reduction. 
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