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Abstract. We present a hardware/software implementation of the IEEE
802.15.3 MAC protocol. Processing-intensive and time-critical protocol
tasks are handled by a protocol accelerator that is integrated on-chip
with a 32-bit general-purpose processor in order to achieve a moderate
(20–40 MHz) system clock frequency. This enables low-power wireless de-
vices compliant with this standard, providing high data rate, multimedia
communication.
One of the main tasks of the protocol accelerator is to analyze received
or transmitted beacons. Based on the channel time allocations broadcast
in the beacon and frame information stored in a hardware transmission
queue, frames are transmitted without immediate control of the proces-
sor. Other features of the protocol accelerator include CRC generation,
handling of immediate acknowledgment frames, and direct memory ac-
cess.
Keywords: Personal area networks, protocol implementation, hardware
accelerator.

1 Introduction

Wireless communication systems have attracted tremendous research work in
industry and academia in the past decade. As the outcome of this research,
new communication protocol standards, applications and products have been
developed. In the future, we will see new applications in, for instance, personal
health care, multimedia entertainment, or industrial automation making use
of wireless body area network (BAN), personal area network (PAN) or mesh
networking technology. These applications are characterized by a demand for
high data rates, quality-of-service (QoS) provisioning, as well as energy efficiency.
Low energy consumption is critical for networks of battery-powered devices with
targeted network lifetimes of months and years.

In 2003, the IEEE has standardized a medium access control (MAC) and
physical layer specification for high data rate wireless PANs, known as IEEE
802.15.3 [1]. Work on improvements of the MAC layer, alternative physical layers
as well as a mesh networking extension has continued. We see this standard as
a good candidate for future wireless applications and an enabling technology for
low-power, wireless multimedia communications for a number of reasons:
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The IEEE 802.15.3 MAC protocol offers an isochronous data service, support-
ing multimedia as well as industrial applications with requirements for guaran-
teed transmission opportunities. To save energy, devices may go into power-save
mode. Synchronized power-save sets ensure that all devices in the set wake up at
the same time. The used channel access scheme is time-division multiple access
(TDMA). This way, the protocol can easily be used with ultra wide band (UWB)
transceivers, that do not provide a channel sensing capability. Contention access
based on channel sensing is optional. Furthermore, the specified high data rates
from 11–55 Mbit/s reduce the transmission duration of frames. While high-rate
transceivers typically consume more power than low-rate transceivers, still the
amount of consumed energy per bit can be less than for low-rate transmissions.
High-rate transmissions become more energy-efficient when messages can be ag-
gregated to larger packets and the overhead for switching the radio transceiver
from power-down to active mode is reduced.

High data rates on the physical layer and complex protocol functions, such
as scheduling allocated time slots and managing power-save sets, require more
processing power on the devices, especially for devices that are capable of acting
as piconet coordinator (PNC). However, in many applications all networked
devices must be battery-powered, like in a wireless network of sensors located
on the human body. We advocate the use of protocol accelerators for processing-
intensive and time-critical protocol tasks in order to achieve a moderate (20–40
MHz) system clock frequency. With this approach, the protocol functionality
is partitioned into software executed on a general-purpose micro-controller and
hardware integrated on-chip with the processor.

The remainder of this paper is organized as follows. Section 2 briefly intro-
duces the IEEE 802.15.3 MAC protocol with a stress on timing-critical func-
tionality. In Sect. 3, our protocol design flow—from an abstract SDL model
until hardware/software partitioning—is presented. In the main part of the pa-
per, Sect. 4, the design of the protocol accelerator for the IEEE 802.15.3 MAC
protocol is explained. Finally, we present related work and conclusions.

2 IEEE 802.15.3 MAC Protocol

In a wireless network operating according to the IEEE 802.15.3 standard, there
is one piconet coordinator (PNC) and a number of associated devices. The
PNC broadcasts beacon frames at regular time intervals. These beacons con-
tain, among others, information about the time of the next beacon and when
other devices may access the channel in the same superframe, i.e. in the time
until the next beacon.

A channel time allocation list, which is part of the beacon frame, announces
the time slots that are reserved exclusively for the devices. Additionally, the
PNC may define a contention access period (CAP) following immediately after
the beacon. In this CAP, all devices can access the channel using a random
backoff procedure. Data communication among the associated devices is peer-
to-peer. An example of a piconet and a beacon frame is shown in Fig. 1.
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Fig. 1. IEEE 802.15.3 network topology and superframe structure (example)

IEEE 802.15.3 MAC frames consist of a 10-byte header followed by an arbi-
trary length payload field. Furthermore, a 32-bit frame check sequence (FCS) is
calculated over the payload and added to all transmitted frames. The CRC-32
algorithm is used for this purpose. The frame receiver performs the same cal-
culation and compares the final CRC value to determine if any bit error has
occurred during the transmission.

In most cases, especially in the case of command frames, the sender expects
the receiver to acknowledge the correctly received frame immediately, i.e. exactly
10 microseconds after the end of the frame. If an acknowledgement frame is not
received, the sender will retransmit the frame. The basic MAC frame format and
the immediate acknowledgment policy is shown schematically in Fig. 2.

time

MAC header

ACK frame

MAC header Payload FCS

10 n 4 bytes

Transmitted frame 10 µs

Dev A

Dev B

Fig. 2. IEEE 802.15.3 MAC frame format and immediate acknowledgment policy
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The specified data rates in the standard range from 11 to 55 Mbit/s, however
the same MAC protocol can be used with much higher or lower data rates, as
well.

3 Design Flow

The starting point of our design flow was the IEEE 802.15.3 MAC protocol
specification [1]. The protocol implementation is targeted for a system-on-chip
based on the LEON2 processor. LEON2 is a synthesisable VHDL model of a
32-bit processor compliant with the SPARC V8 architecture [4].

3.1 Protocol Modeling

We have modeled all the necessary functionality in SDL [2] using Telelogic TAU
SDL suite [3]. SDL (Specification and Description Language) is a formal de-
scription technique that allows to model behavior by means of communicating
extended finite state machines. By extensively simulating our IEEE 802.15.3
MAC protocol model we could verify its correct functionality. Details of this
model can be found in [10].

The validated SDL model is the basis for the MAC protocol implementation
by an automatic transformation. The effort of re-implementing the protocol in
C/C++ would be too high and error-prone compared to an optimization ap-
proach where inefficient SDL concepts in the model are replaced by equivalent
functions with less overhead. Additionally, the time to achieve a fully tested
implementation is considerably shortened.

3.2 Operating System Integration

The next step was to target the SDL model to an operating system (OS), in our
case the Reflex OS [8]. For this purpose, we developed a so-called Tight Integra-
tion model [11]. This replaces the SDL run-time environment with a tailored,
very efficient OS integration layer.

Reflex is a tiny, event-flow oriented OS for deeply embedded systems [7].
Although quite similar to TinyOS [9], the operating system most often used for
wireless sensor nodes, we believe it is better tailored for our system because of
its earliest-deadline-first process scheduling strategy. Whereas TinyOS tasks run
to completion before any other task is scheduled, time-critical tasks (activities)
will interrupt lower-priority activities in Reflex. Such a behavior is difficult to
achieve in TinyOS.

The required memory space for the operating system Reflex, the integration
layer, and a simple SDL system was measured to be about 20 kbytes for a system
targeted for the LEON2 processor.
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3.3 Hardware/Software Co-Design

Some of the MAC protocol functionality underlies tight timing constraints, for
instance acknowledgment (ACK) frame transmission has to start exactly 10 mi-
croseconds after the end of a received frame. To identify bottlenecks in the pure
software implementation and to estimate the required clock frequency to meet all
timing constraints, we performed a profiling of the software. For that purpose,
the software was simulated using the LEON2 instruction set simulator (ISS)
TSIM [5].

Furthermore, with TSIM it is also possible to model the behavior of hardware
components that are connected to the LEON2 processor via the on-chip bus.
This enables the simulation of the system with protocol functionality mapped
to hardware. To achieve this, the corresponding functions were removed from
the software model and put into a hardware component. This allowed us to
study the new timing behavior of the protocol implementation and optimize the
hardware/software partitioning until all timing constraints were met and the
required clock frequency was acceptable.

As a result of the hardware/software partitioning we identified the frame
reception and transmission procedure, superframe timing control, immediate ac-
knowledgment handling, and parts of the transmission queue to be designed
in hardware. In other words, all the low-level, timing-critical and processing-
intensive tasks of the channel access mechanism have been mapped to the hard-
ware partition. This corresponds well to the lowest service layer in our SDL
model, which is called Transport Engine (see Fig. 3).
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Fig. 3. Functional layering of the SDL processes of the MAC protocol model, partition
mapped to hardware highlighted.

The remaining protocol functionality is handled by the LEON2 processor.
Interrupts are used to signal protocol-related events from the hardware to the
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software. Conversely, the software interacts with the hardware block by writing
to and reading from a number of control registers.

4 Protocol Accelerator Design

In this section we first introduce the target hardware platform for the protocol
accelerator. Then, we present the overall architecture of the accelerator and
how its components work together to provide the desired functionality. This is
followed by a detailed presentation of the transmission queue component. We
show how our design can be used for different data rates and non-standard
physical layer timing parameters and how the protocol software and hardware
accelerator interact with each other. Finally, the section is concluded with results
from an FPGA implementation of the complete system.

4.1 Target Hardware Platform

The MAC protocol accelerator is one important component of our wireless com-
munication platform. The heart of this hardware platform is the LEON2 pro-
cessor [4], that runs protocol and application software. We pursue a single-chip
integration of the MAC protocol, digital baseband processing and the RF front-
end, as shown in Fig. 4.
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Fig. 4. Sensor node implementation based on our wireless communication platform
(white box).

The protocol accelerator is connected to the system bus, the AMBA AHB
bus (see Fig. 6). Via an AHB master interface it is possible for the accelerator
to directly access the system memory, for instance to store and retrieve frame
data without involving the LEON2 processor.

For data transfer to/from the baseband processor as well as status indica-
tions from the physical layer, the MAC-PHY interface was designed. It is of
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master/slave type with the MAC protocol accelerator acting as master. The ac-
celerator sends commands to control the start of transmission or reception and
to exchange frame data. The baseband processor contains a 32-byte data buffer
for storing frame data in both, RX and TX, direction in order to decouple the
two protocol layers with respect to timing (see Fig. 5). There are some signals
from the physical layer to the MAC hardware accelerator that indicate the status
of these buffers and can be used for flow control.
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Fig. 5. Interface between MAC protocol accelerator and the physical layer. TX Ready
when TX buffer not full, RX Start ind when reception of new frame has started,
RX Ready when RX buffer not empty.

4.2 Architecture

Figure 6 shows the main components of the protocol accelerator. The tasks
performed by each of the main components are listed below. They reflect the
protocol functions that have been identified to be designed in hardware in Sect. 3.

– In receive direction, to retrieve frame data from the physical layer byte by
byte, perform filtering and CRC check, and to store the data at a given mem-
ory location by means of direct memory access (components Rx controller,
CRC, and DMA).

– In transmit direction, to retrieve frame data from a memory location, calcu-
late and append the check sum, and to push the data to the physical layer
(components Tx controller, CRC, and DMA).

– To signal a successful reception or transmission of a frame to the processor
by an interrupt (component Interrupts).

– To analyze received and transmitted beacon frames and extract information
on channel time allocations (component Beacon parser).

– To manage a queue of frames that are to be transmitted and to select an
appropriate frame for transmission (component Transmission queue).

– At the start of a time slot or following a frame transmission, to query a new
frame from the queue and, in the case that the frame must be acknowledged
by the receiver, wait for the acknowledgment frame (components Scheduler
and Timers).

– To perform the backoff procedure in the contention access period (compo-
nents Scheduler and Timers).
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– To send an acknowledgment at the right time upon reception of a frame
that needs to be acknowledged (components Scheduler, Timers, and Tx con-
troller).

An additional component (CalcDuration), that is not shown in Fig. 6 for
simplicity, calculates the actual duration of a frame transmission based on its
payload length and data rate. This component is used to determine if a frame
transmission fits into an available time slot and when a transmission initiated
by the protocol accelerator will be completed by the physical layer.
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Fig. 6. Hardware architecture of the protocol accelerator (direct memory access data
path highlighted).

4.3 Transmission Queue

The Scheduler, Transmission queue, and DMA components in the protocol ac-
celerator facilitate a frame transmission operation that is not directly controlled
by the processor. This allows to reduce the clock frequency of the processor and,
hence, leads to possible energy savings. The Transmission queue component,
that shall be discussed in this section, has a key role in this operation.

The transmission queue designed for the IEEE 802.15.3 MAC protocol accel-
erator contains and manages a table with information on frames to be transmitted—
not the frame data itself, which is stored in application memory. The protocol
software running on the LEON2 processor fills the table according to the gen-
erated frames and their transmission order. An interrupt is signaled to the pro-
cessor as soon as a frame from the queue has been transmitted successfully or
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its maximum retransmission limit has been reached. This indicates to the soft-
ware that the entry in the table is free and can be reused by another frame. An
update, however, does not have to happen immediately as there are still enough
frames in the hardware transmission queue.

The current design contains 8 table entries, but there might be many more,
e.g. 32 or 64. In order to find the right frame upon request from the Scheduler
quickly, there are ordered lists for different frame types, for instance for beacon
frames or frames that can be transmitted in the contention access period. The
table index of the first list item is kept in a register. From this item the complete
list can be traversed by following the table index of the next list item, that is
stored in the table. Furthermore, there is a reference to the previous list item to
support delete operations efficiently. In essence, this forms a double-linked list.
These lists are also used to preserve the right order of data frames where the
MAC protocol provides this service to the higher layers.

4.4 Support for Flexible Timing

The protocol accelerator has been designed such that it is not limited to a fixed
data rate or time intervals between consecutive frame transmissions (interframe
spaces). Instead, a number of software programmable registers have been in-
troduced that completely determine the timing behavior of the protocol. These
registers are read by the Scheduler to calculate the point in time when the next
frame can be transmitted. There are registers for SIFS, MIFS, and backoff slot
duration, each given in microseconds.

Additionally, there is one programmable register which contains a rate factor
and is used by the above mentioned CalcDuration component to calculate the
duration of frame transmissions.

4.5 Software Interface

The protocol software interacts with the hardware accelerator through a set
of registers that are accessible from the processor via memory mapped I/O. A
special memory region is reserved for the accelerator. Additionally, interrupts
are used to signal events from the protocol accelerator to the processor.

The protocol accelerator contains a number of configuration registers that
store MAC protocol information like the piconet or device identifier. It is possi-
ble to enable or disable the scheduler with another register. When the scheduler
is enabled, the protocol accelerator will analyze beacon frames and seize trans-
mission opportunities, otherwise it is just in scanning mode and delivers received
frames.

The protocol accelerator features four maskable interrupts: superframe start,
MAC header received, MAC frame received, and transmission queue interrupt.
The latter is triggered when a queued frame has been sent or was discarded. Two
registers indicate the first free queue index and the first index that contains a
transmitted or discarded frame. This way, the software does not have to browse
the complete queue.
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While the software is modifying the transmission queue, the hardware may
not access its contents in order to avoid inconsistencies. Similarly, when the
hardware is browsing the queue for a suitable frame to transmit, the software
may not alter its lists. Therefore, a lock must be acquired by the software before
an operation on the queue can be performed and released when it is done. When
the queue is locked, the hardware cannot access the queue.

To control the receive operation, there are registers for the address where the
next payload can be stored and for the size of this buffer. When the accelerator
has written data to this buffer, no other payload can be received unless a new
payload buffer address is provided by the software. An acknowledgment frame
will be generated only if the header and payload of the received frame have been
stored.

4.6 Results

In a first step, we have implemented the LEON2 system and protocol accelera-
tor on a Xilinx Virtex-II FPGA. We have successfully tested the complete MAC
protocol implementation, i.e. the protocol software running on the LEON2 pro-
cessor and the protocol accelerator, by connecting two such boards with wires.
This emulates a network of two devices. The wires couple the boards below the
MAC layer, data symbols are transferred serially at a rate of 20 Mbit/s. Table 1
shows the usage of FPGA resources of the same LEON2-based system with and
without the protocol accelerator.

Table 1. FPGA resources used by the MAC protocol system.

Resources LEON2 system Difference

Original With prot. acc.

4 input LUTs 11,582 24,034 12,452

Occupied slices 6,828 14,365 7,537

Block RAMs 20 22 2

Equivalent gate count 1,427,060 1,681,651 254,591

After the successful test on the FPGA, the complete LEON2-based MAC
processor including Flash memory and peripherals has been designed and taped
out as an ASIC in 0.25 µm CMOS technology. The chip occupies an area of 31.9
mm2 and consumes 15mW/MHz. Based on our synthesis results, the silicon area
of the protocol accelerator is about 1.8 mm2.
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5 Related Work

The design of dedicated hardware to speed up data processing and save energy
has long been exploited in digital system design. MAC protocol accelerators for
wireless communication systems have been reported, e.g. by Meng et al [13] and
Fujisawa et al [14], for the IEEE 802.11a standard, and by Haroud et al [15] also
for the IEEE 802.15.3 standard. In the latter publication, little is said about the
mechanism to initiate frame transmission and the interface between hardware
and software.

The use of hardware queues for autonomous transmission of packets is well-
known practice and has also been described in [13] and [14]. However, hardware
transmission queues are not limited to the design of wireless communication
systems, but are used also in high-performance network switching devices such
as ATM routers.

6 Conclusion

We have presented a hardware/software implementation of the IEEE 802.15.3
MAC protocol. A prototypical system has been developed for an FPGA board
and shows correct and timely protocol behavior at a system clock frequency of
40 MHz with 20Mbit/s physical layer data rate.

While details on our software design have been published elsewhere, we have
focused in this paper on the design of a protocol accelerator and on the commu-
nication between the hardware and software part. Moderate clock frequencies of
the general-purpose microprocessor—in our case the LEON2 processor—could
be achieved mainly because of using direct memory access to payload data in
RAM and a hardware transmission queue.

We plan to integrate hardware cores for encryption and decryption in the
protocol accelerator, since security algorithms are data-processing intensive and
also time-critical tasks. Our current hardware accelerator architecture allows this
extension without much design effort.

The proposed protocol accelerator can be used as an IP core for future wire-
less multimedia communication systems that need to consume low power. The
hardware provides programmable registers to adapt to the intended physical
layer data rate and timing parameters. Furthermore, its standard AMBA AHB
bus interface and the interrupt mechanism make it easy to be integrated with
different hardware platforms. The software interface to the protocol accelerator
is simple but effective.

Though the presented protocol accelerator is designed specifically to support
the IEEE 802.15.3 MAC protocol, its architecture and many of its components
can be reused with slight modifications for other protocols. In fact, we plan to
use it for a low-power wireless sensor node based on the IEEE 802.15.4 standard,
where the channel access mechanism is quite similar.
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