
Locally-Constructed Trees for Adhoc Routing

Ricardo Marceĺın-Jiménez ?

calu@xanum.uam.mx

Electrical Eng. Dept., UAMI;
Atlixco 186; 09340 México D.F., MEXICO

Abstract. We present a family of self-stabilizing distributed algorithms
to built a spanning tree on the underlaying communications graph of an
adhoc wireless network. Next, based on this principle, we show how to
construct two overlaying trees which are suitable for routing tasks.

1 Introduction

Routing using local information has been considered an alternative approach
to cope with the main drawbacks of traditional strategies, such as scalability or
fault-tolerance [1], [2], [4], [5], [8], [11]. Most of the routing algorithms using local
position information, perform a preliminar process on the underlying graph, in
order to produce a planar one where working requirements are met [7], [9].

We present a routing algorithm for adhoc wireless nets where each node
knows its coordinates on the plane, and the relative coordinates of its neighbors
in order to built up two overlaying spanning trees where routing operations have
place. Each tree is a self-reconfigurable structure which is able to tolerate links
and node failures.

The rest of this work includes the following parts: section 2 presents the the-
oretical framework that supports our proposal, section 3 introduces our general
distributed spanning tree algorithm and shows how routing tasks can be imple-
mented on top of two overlaying structures of this kind, section 4 offers some
performance metrics about 4 different types of construction algorithms, based
on the principles developed in section 3, finally section 5 is a discussion about
the applications and directions for further work.

2 Assumptions and Models

This work deals with distributed algorithms in an asynchronous network model.
The asynchronous network is a point-to-point (store-and-forward) communica-
tion network, described by a communication graph G = (V, E), of order |V | and
size |E|, where the set nodes V represents a set of state machines called the pro-
cessors of the network and the set of links E represents communication channels
operating between them. Let x and y be two nodes in V . There is a link from x

? Visiting the CINVESTAV under contract Marina-CONACyT 2002C013199A

to y if and only if x can talk directly to y. In our simplified model, we ignore all
radio propagation effects and make all nodes have the same transmision range
which we set to be equal to 1. The graph G is called the unit distance graph:
there is a link between any two nodes whose distance is less than or equal to 1.
The assumptions we make are that: a given MAC protocol is already in opera-
tion on the underlying network, all nodes know their geographic location, each
node knows its immediate one-hop neighbors (those within its radio range) and,
finally, we assume that all nodes but one, have a west-ward (north-ward) neigh-
bor. Any node may suffer a crash failure and will be considered permanently out
of service from then on.

We usually denote the ith processor in the system by pi. FIFO queues are
used to model asynchronous delivery of messages. A communication link is either
unidirectional or bidirectional. A unidirectional communication link from process
pi to pj transfers messages from pi to pj . The abstraction for such a unidirectional
link is a first-in-first-out queue qij , that contains all messages sent by pi to its
neighbor pj , that have not yet been received. The bidirectional communication
link between pi and pj is modeled by two FIFO queues, one from pi to pj and
other from pj to pi.

A system configuration c is a full description of a distributed system, at a
particular time and consists of the state of every processor and the content of
every queue. We use the term step for a computation step and we denote it by
a. Let c1 and c2 be two configurations of the system, where c2 is reached from c1

by a single step a of a processor; we denote this fact by c1

a
→ c2, also we say that

a is applicable to c1. An execution (c1, a1, c2, a2, . . .) is an alternating sequence

of configurations and steps such that ci−1

ai−1

→ ci.

No common memory is shared by the node’s processors, and each node pi has
a distinct identity i. Each node processes messages received from its neighbors,
performs local computations, and sends messages to its neighbors. All these
actions are assumed to be performed in negligible time. All of the messages have a
fixed length and may carry only a bounded amount of information. Each message
sent by a node to its neighbors arrives within some finite but unpredictable time,
unless a message lost happens. To model such events we extend the definition
of a step to include environment steps of type lossij(m) that is applicable to
a configuration ck in wich qij contains the message m. This step results in a
configuration ck+1 in which m is removed from qij .

A fair execution is an execution in which, if infinitely often a processor has a
step to execute then the processor executes this step infinitely often. Also, we do
require that if a message is sent infinitely often, the message is received infinitely
often. To satisfy fairness the receive step must be executed infinitely often while
the loss step should not be executed infinitely often.

A self-stabilizing system can be started in an arbitrary configuration and will
eventually exhibit a desired “legal”, behavior. We define this legal behavior by a
set of legal executions denoted LE. Every system execution of a self-stabilizing
system should have a suffix that appears in LE. A configuration c is safe with
regard to a task LE and an algorithm if every fair execution of the algorithm

that starts from c belongs to LE. An algorithm is self-stabilizing for a task LE if
every fair execution of the algorithm reaches a safe configuration with relation
to LE [3].

The following complexity measures are used to evaluate performance of dis-
tributed algorithms operating on the above network. The communication com-

plexity is the total number of messages sent during execution of the algorithm.
The time complexity is the maximum time passed from its start to its termina-
tion, assuming that the time of delivering a message over each link is at most one
unit of time. This bounded delay is assumed only for evaluating time complexity.

3 The Algorithm

This section is intended to sketch, from a formal view, the correctness of our
setup and routing algorithms. It also fixes some bounds on the complexity of the
whole process.

We claim that, once the process attains a steady condition, a distributed
spanning tree is built on the set of participating nodes. The ancestor, descen-

dant, and level concepts furtherly required are defined recursively: the root is
axiomatically considered to be its own father, with its level equal to 0. A node’s
ancestor is said to be its father or any ancestor of its father. A node’s level is
said to be 1 plus the level of its father. A node’s descendant is its sibling or a
sibling of any descendant.

A START message indicates that the node must (re)trigger its father-searching
procedure. During operations, nodes exchange three different messages: HELLO,
DESCENDANTS and ANCESTORS. The HELLO message is issued by a node
that has selected a place from its westward neighbors to be its father on the
structure under construction. The receiver considers the sender to be its direct
sibling, and gets prepared for further information coming from this place. The
DESCENDANTS message is issued by a node to inform its father about the list,
called Upper, of siblings (either direct or not) that can be reached through it.
Finally, the ANCESTORS message is issued by a father to let its direct siblings
know the list of nodes, called Lower, on the path from the resulting root to it.

We said that this algorithm evolves in cycles, each of them having two phases:
during the first one, the convergecast, information flows from the leaves to the
root, by means of the HELLO and DESCENDANTS messages. In the second
phase, the broadcast, information goes from the root to the leaves, by means of
the ANCESTORS messages. Each node has two timers that alternatively work to
mark the ending of the corresponding phase. Upon the expiration of a timer the
node is compelled to finish the proper flow with the information so far collected
(See fig. 1).

Lemma 1. There is exactly one node s, that becomes the root.

Proof. Node s exists since there is, at least, one west-most node. i) if there is
exactly one such place, then node s does not have any neighbor j, with relative
polar coordinates (rjs, θjs), for any rjs > 0 and θjs ∈ (π

2
, 3π

2
]. Then, according

Fig. 1. Construction algorithm in node i

< 1> upon the reception of START

< 2> select j ∈ Neighborsi, such that

< 3> j lies on the plane centered in i

< 4> and has relative position (rji, θji),
< 5> rji > 0 and θji ∈ (π

2
, 3π

2
];

< 6> if does not exist such j

< 7> then i am the root;

< 8> else father = j;

< 9> send HELLO to father
<10> start timer1

<11> upon the reception of HELLO from j

<12> Sonsi = Sonsi ∪ {j};
<13> ackj = F;

<14> upon the expiration of timer1
<15> for each k ∈ Sonsi : ackk == F

<16> Sonsi = Sonsi \ {k};
<17> Upperi = Upperi \ Upperk;

<18> cancel ackk;

<19> if i am the root

<20> then Loweri = Loweri ∪ {i};
<21> for any k ∈ Sonsi

<22> send ANCESTORS with Loweri to k;

<23> else Upperi = Upperi ∪ {i};
<24> send DESCENDANTS with Upperi to father;
<25> start timer2
<26> for any k ∈ Sonsi

<27> ackj = F

<28> upon the expiration of timer2
<29> Loweri = {i};
<30> for any k ∈ Sonsi

<31> send ANCESTORS with Loweri to k;

<32> ackj = F

<33> goto <2>;

<34> upon the reception of DESCENDANTS from j

<35> if j ∈ Sonsi

<36> then Upperi = Upperi ∪ Upperj;

<37> ackj = T;

<38> if ¬∃k ∈ Sonsi : ackk == F

<39> then stop timer1;
<40> goto <19>;

<41> upon the reception of ANCESTORS from j

<42> if j == father and timer1 is off

<43> then stop timer2;
<44> start timer1;
<45> Loweri = Lowerj;

<46> goto <20>;

to the construction rule, it becomes the root. ii) assume there is more than one
node having the same west-most (horizontal) coordinate, then all of them but the
south-most will have at least one neighbor with relative polar coordinates within
the selection range. Therefore, the south-most is the only place with conditions
to become the root (see lines < 1 > . . . < 10 > of fig. 1).

Lemma 2. There exists one single path from any node to the root.

Proof. We proof by induction on the levels of the resulting structure. As usual,
the root has level 0 and knows exactly one way to itself. Assume that our state-
ment is true for all nodes up to level n > 0, therefore any node of level n + 1
only knows one way to the root that passes through its single ancestor of level
n, i.e. its father.

Lemma 3. Upon the termination of the first cycle, a distributed spanning tree

is built on the set of active nodes and each one knows the list of lower and upper

places that are reachable through its father and siblings, respectively.

Proof. With the exception of the root, each node selects exactly one link (go-
ing to its father). Therefore, we have |V | − 1 links that make up the resulting
structure.

We state that for any node j, if every k ∈ Lowerj is active, then s ∈ Lowerj

and j ∈ Uppers, as consequences of the converge and broadcast phases, respec-
tively. Suppose this condition is true for any two nodes i and i′ of level n and
m, respectively. Also, suppose that i needs to reach i′. If m < n, then either
i′ ∈ Loweri or there exists exactly one path from i to i′ that passes through the
root s. On the other hand, if m ≥ n then, unless i′ ∈ Upperi, it is also granted
that there exists exactly one path from i to j that passes through the root s.

We have shown that it is possible to find exactly one path between any two
nodes, and also that the resulting graph has a minimum number of links (see
lines < 11 > . . . < 13 > and < 34 > . . . < 46 > of fig. 1).

Lemma 4. A node that loses the link to its father, eventually selects a new one

and resynchronizes its subtree cycle with the rest of the structure.

Proof. Suppose a node i has a direct sibling j, which in turn has a direct sibling
k. Upon the event of a failure in j, two links will be dismissed: (i, j) and (j, k).
Nevertheless, only k will be in charge of the recovery procedure, selecting a
new father to reconnect its subtree. Recovery starts when k sends a HELLO
message to its new father. This means that the timer 2 of the issuing node k

has elapsed and it takes for granted that its former father is lost. Therefore, k

starts its convergecast phase. In due time, it gathers all of the information about
the upper nodes it is able to reach and now sends a DESCENDANTS message
to its new father j′. Now k starts timer 2 again and sits down waiting for an
ANCESTORS message coming from j ′. At the other end of the new link, j ′ may
be either in the convergecast or in the broadcast phase. In the first case, j ′ was
just waiting for the DESCENDANTS message to update its Upperj′ list. In due
time, it will send an ANCESTORS message back to k wich will help it to update

its Lowerk list. In the second case, j ′ sends an ANCESTORS message back to
k as in the previous case, but j ′ will not be able to update its own information
up to the next cycle (see lines < 28 > . . . < 33 > of fig. 1).

We claim that the task ST of legitimate sequences is defined as the set of all
configurations in which every configuration encodes a spanning tree of G. The
preceeding lemma grants that it takes 2 cycles, at most, in order to reach a safe
configuration that codifies a new tree.

Lemma 5. A node with a timer that prematurely expires eventually updates with

the correct structural information and resynchronizes its subtree cycle with the

rest of the structure.

Proof. Suppose timer 1 ends at node i and later a DESCENDANTS message is
received at i from a direct sibling j. In this case, j has already been dismissed
and the message is not accepted. Eventually, j will not receive the corresponding
ANCESTORS message and will take for granted that its father is lost. This will
trigger its recovery procedure as in the preceeding lemma(see lines < 14 > . . . <

27 > of fig. 1).
Suppose timer 2 ends at node i and later an ANCESTORS message is received

a i from its father. In this case, as soon as timer 2 finishes, i starts its recovery
procedure and selects a new father, therefore in the case of a late message from
the former father, it will not be accepted(see lines < 28 > . . . < 33 > of fig. 1).

Lemma 6. A cycle has message complexity O(|V |) and time complexity O(|V |),
while a recovery takes an overhead O(1).

Proof. During the first cycle, a HELLO message is sent over each of the links
that will make up the resulting tree. Next, at the end of the convergecast, a
DESCENDANTS message will climb the same links to the root. Finally, during
broadcast, an ANCESTORS message will flow down the leaves exactly on the
same links but in opposite direction. From then on, only DESCENDANTS and
ANCESTORS will traverse the resulting structure, unless an active node starts
the recovery procedure sending, for one single time, a HELLO message to its
new father. The rest of the synchronization can be regarded as being part of an
ordinary cycle (see lines < 1 > . . . < 10 > of fig. 1).

So far, it has been shown that is possible to built up a spanning tree that
keeps updated its structure information despite of link or node failures. Our
construction is based on the local knowledge each node has about the position
of its neighbors. Each node, except the resulting root, selects a neighbor within
a geometric range. Clearly, this range can be reoriented, i.e. we can construct an
north-ward tree, instead of a west-ward. But, what if we construct both trees
at the same time? We will have two overlaying, self-reconfigurable, structures
to profit from, as in a railroad system. It may have a great impact on routing
procedures. Suppose we have an east-west tree TEW , and a south-north tree
TSN on the same underlaying network. If node i requires to reach node i′, it
is granted that there are at two routes, one on each tree, and it is possible to

install a performance metric to choose the best one. But also, in case of local
problems, it could be possible to take an alternative path around the affected
area. We present a very simple routing algorithm based on this possibility.

Let us assume again, that node i has an application message m, for node
d = i′, then it encapsulates both data inside a routing packet that we will call
INFO. Each place on the way from source to destination will obey the following
procedure (See fig. 2).

Fig. 2. Routing algorithm in node i

< 1> upon the reception of INFO, carrying m to d

< 2> for some T and T ′
, either TNS or TEW

< 3> if i == d

< 4> then receive m;

< 5> else

< 6> if ∃k ∈ SonsT
i , d ∈ UpperT

k

< 7> then forward INFO to k;

< 8> else

< 9> if d ∈ LowerT
i

<10> then forward INFO to father of T;

<11> else

<12> let T ′
be the tree with the nearest root

<13> if i is not the root of T ′ and father is up

<14> then forward INFO to father of T ′
;

<15> else stand by until recovery;

Lemma 7. Unless d crashes, m eventually arrives to d.

Proof. It is a structural property of the overlaying trees (lemma 3). In this case
each node must look at the two trees it belongs to, in order to find a direct
route to d, or forwarding m to the closest root r′ (either of TEW or TSN) where
it is granted to exist a direct branch from r′ to d (Nevertheless, it can find a
better route on its way to r′). Finally, if m arrives to r′ and there is not a built
up branch going to d, it means that there has been a failure and it is better to
wait until recovery is finished. Once the system is recovered, r′ will forward m

towards d, unless d is lost.

We leave for the next section some experimental evidence about the diameters
of the resulting trees, which bound the complexity of the routing procedure.

4 Experimental Results

For each graph here considered we run 4 different families of algorithms, defined
according to their tree construction procedures. Each family is said to perform an
east-west scanning which produces a so-called horizontal (H) tree, next a similar
procedure is performed according to a south-north scanning which produces a
vertical (V) tree.

Basically all of the construction rules can be explained under the same prin-
ciple, for an east-west (south-north respectively) scanning, take any node on a
graph and select all of its incident edges going to the west (respectively north)
and dismiss them all but one. Differences arise from the way this surviving edge
is chosen:

Fig. 3. H tree produced with A1 Fig. 4. V tree produced with A1

Fig. 5. H tree produced with A2 Fig. 6. V tree produced with A2

algorithm 1 (A1) for each node, we consider the west-ward neighbors’ edges
and dismiss all but the first edge in counterclockwise sense (fig. 3). Next we

perform the same operation over the 90 degrees rotated graph or, equiva-
lently, from each node considering its north-ward neighbors’ edges(fig. 4).

algorithm 2 (A2) for each node, select all of its incident edges going to the
west and dismiss them all but the first on a clockwise sense (fig. 5). In
contrast, for a vertical scanning, select all of the incident edges going to the
north and dismiss them all but the first on a counterclockwise sense (fig. 6).

Fig. 7. H tree produced with A3 Fig. 8. V tree produced with A3

Fig. 9. H tree produced with A4 Fig. 10. V tree produced with A4

algorithm 3 (A3) again, in the horizontal scanning, select all of the incident
edges going to the west and dismiss them all but one which is randomly
picked up(fig. 7). In contrast, for a vertical scanning, select all the incident
edges going to the north and dismiss them all but one which, as could be
expected, is also randomly picked up(fig. 8).

algorithm 4 (A4) for each node, consider all of its incident edges going to
the west and dismiss them all but the one closest to the horizontal axis.
Next, we perform the same operation over the 90 degrees rotated graph or,

equivalently, we dismiss all of the edges going to the north but the one closest
to the vertical axis(fig. 10).

Three measures will be considered as a common basis in order to evaluate
and compare the algorithms under study: i) HV correlation measures the number
of edges belonging to the horizontal tree that also appear in the second one
(vertical), ii) the mean diameter measures the mean longest path on the resulting
trees, iii) finally, the degree and max. degree frequencies show the statistics of
the nodes on the resulting constructions.

Table 1. 95% confidence intervals for the average correlation between H and V trees

HV %correlation

A1 15.6 ± 0.2
A2 41.4 ± 0.2
A3 43.4 ± 0.3
A4 6.5 ± 0.1

Table 1 presents the HV correlation measured on each couple of trees con-
structed according to the 4 algorithms which were ran on 100-nodes graphs.
Notice that in algorithm 1, the surviving edge is the last-one in clockwise sense,
either on EW or SN scanning. In algorithm 2, the surviving edge is the first-one
in clockwise (counterclockwise) sense for EW (SN) scanning. The poor perfor-
mance on the HV correlation between the resulting trees is due to this selection
rule, for it happens frequently that SN-surviving edge of one node is the same
EW-surviving edge of a second node. In algorithm 3, the surviving edge is ran-
domly selected in both scanningsm which does not seem to be a good rule, at
least for the HV measure. In algorithm 4, the surviving edge is the one closest
to the horizontal (vertical) axis for an east-west (south-north) scanning. This
selection produces the best (lowest) correlation in all of the cases.

Table 2. 95% confidence intervals for mean diameters

order 20 40 60 80 100

A1 9.2 ± 0.06 14 ± 0.09 18 ± 0.11 21 ± 0.09 23 ± 0.16
A2 9.1 ± 0.07 14 ± 0.05 18 ± 0.20 21 ± 0.20 23 ± 0.29
A3 11 ± 0.07 17 ± 0.08 21 ± 0.15 21 ± 0.59 13 ± 0.92
A4 9.1 ± 0.07 14 ± 0.08 18 ± 0.10 21 ± 0.13 22 ± 0.42

Table 2 shows how the mean diameter evolves according to the graph order.
The most interesting result is the way diameter grows in algorithm 3, which is
completely different from the rest of the algorithms that have a smooth growing
rate that follows an empirical law of the form cn1/3 log(n).

Table 3. Algorithms A1 to A4, degree and max. degree frequencies

1 2 3 4 5 6 7 8 9

A1 deg. freq. 0.31 0.47 0.17 0.036 0.0097 0.0032 0.00051 0.00013 0
A1 max. deg. 0 0 0 0.14 0.5 0.29 0.051 0.013 0

A2 deg. freq. 0.32 0.45 0.17 0.038 0.012 0.0033 0.00059 0.00012 0
A2 max. deg. 0 0 0 0.071 0.56 0.29 0.059 0.012 0

A3 deg. freq. 0.35 0.4 0.2 0.049 0.0088 0.0013 0.00012 0 0
A3 max. deg. 0 0 0 0.31 0.55 0.13 0.012 0 0

A4 deg. freq. 0.32 0.46 0.17 0.039 0.011 0.0029 0.00073 0.00018 0
A4 max. deg. 0 0 0 0.091 0.55 0.27 0.073 0.018 0

Tables 3 shows the degree distribution for trees built up according to the
algorithms under study, all of them ran on 100-nodes graphs. As for degree
distribution, all of the tables show similar results which could be considered as
a regular feature of the trees obtained according to this scanning principles. As
for max. degree distribution, the slight differences arising in algorithm 3 could
be the explanation for the results in table 2.

5 Conclusions and Further Work

Position is a source of global knowledge that adhoc wireless networks can profit
from. Perhaps it might not be necessary to have a GPS on each node and it will
do with two beacons located in orthogonal positions to let each place evaluate
its coordinates based on field intensity.

We have introduced different ways to built up two overlaying spanning trees,
all of them based on the same principles here presented. The impact of each
procedure can be evaluated according to different parameters: mean diameter,
mean degree and the number of common links between the resulting trees. We
believe that the first two measures indirectly define the complexity of routing,
while the last one indicates the robustness of the whole system.

About the experimental work, we should notice that having two trees built up
from two different scanning senses makes the overlaying trees look like a subway
or train system, this means that most of the nodes might work as an exchange
points wich can have a great impact on the routing procedures, i.e. packets can
travel over the horizontal tree and switch their routes to a vertical direction at
any node, in order to shorten their path towards a given destination.

All of the procedures under test built up their corresponding trees from the
local information that each node has about its neighbourhood. The importance of
this approach becomes evident when we consider the following scenario: assume
one of the nodes crashes, then only those neighbours directly connected with
the missing place will be in charge of the reconfiguration. The rest of the nodes
will not be (and do not need to be) aware of the changes triggered by the crash
failure.

For further work, it would be interesting to find a tradeoff between timers’
length (update rate) and communications overhead. Our solution might be ap-
plied in sensor networks too. In such case, this tradeoff would play a key role to
lengthen battery lifetime [12],[6]. Also, we believe that the routing procedures
here presented can be applied in mobile environments when all the nodes are
moving in the same direction. Finally, we think that routing algorithms can be
improved as long as we imposse restriction on the structural properties of the
resulting trees.

References

1. K. Alzoubi, X.-Y. Li, Y. Wang, P.-J. Wan, O. Frieder, “Geometric Spanners for
Wireless Ad Hoc Networks,” IEEE Transactions on Parallel and Distributed Sys-
tems, Vol. 14, No. 5, May 2003.

2. P. Bose, P. Morin, I. Stojmenovic, and J. Urrutia. “Routing with guaranteed de-
livery in ad hoc wireless networks”. In Proc. of Discrete Algorithms and Methods
for Mobility (DIALM’99), pages 48–55, 1999.

3. S. Dolev, “Self-Stabilization”, The MIT Press 2000.
4. L. Jia, R. Rajaraman, and C. Scheideler “On Local Algorithms for Topology Con-

trol and Routing in Ad hoc Networks,” Proceedings of the 15th Annual ACM
Symposium on Parallel Algorithms and Architectures, pages 220–229, June 2003.

5. E. Kranakis, H. Singh, and J. Urrutia, “Compass Routing on Geometric Networks”,
In Proceedings of 11th Canadian Conference on Computational Geometry, pp. 51–
54, Vancouver, August, 1999.

6. X.-Y. Li, P.-J. Wan, Y. Wang, and O. Frieder, “Sparse power efficient topology for
wireless networks, J. Parallel and Distributed Computing, to appear.

7. X.-Y. Li, G. Călinescu, P.-J. Wan, and Y. Wang, “Localized Delaunay Triangula-
tion with Application in Ad Hoc Wireless Networks,” IEEE Trans. on Par. Dist.
Systems, 2003. To appear. (Modified version of the INFOCOM’2002 paper.)

8. X.-Y. Li, Y. Wang, O. Frieder, “Localized Routing for Wireless Ad Hoc Networks”,
in proceedings of IEEE ICC, 2003.

9. M. D. Penrose, “On k-Connectivity for a Geometric Random Graph”, Random
Structures and Algorithms, 15, 145-164, 1999.

10. M. D. Penrose, “The Longest Edge of the Random Minimal Spanning Tree”, The
Annals of Applied Probability, 7(2) 1997, 340-361.

11. R. Rajaraman, “Topology Control and Routing in Ad hoc Networks: A Survey,”
SIGACT News, 33:60–73, June 2002.

12. W.-Z. Song, Y. Wang, and X.-Y. Li, “Localized algorithms for energy efficient
topology in wireless ad hoc networks,” 5th ACM Int. Symp. on Mobile ad hoc
Networking and Comp., Tokyo, Japan, 98–108, 2004.

