CONFIGURATION MODEL FOR NETWORK
MANAGEMENT

Rudy Deca', Omar Cherkaoui’ and Daniel Puche’
L2University of Quebec at Montreal; *Cisco Systems, Inc.

Abstract: As today’s networks increase in size and complexity and new network services
are deployed, the management becomes more complex and error-prone and the
configurations can become inconsistent. To enforce the configuration
consistence and integrity, it is necessary to enhance the validation capabilities
of the management tools. The Meta-CLI Model presented in this paper
captures the dependences among the configuration components and the
network service properties and translates them into validation rules. It also
translates the device configuration information into tree-like models and
checks their integrity and consistence using theses rules.

Key words: network management; network services; integrity and consistence validation;
configuration rules; configuration constraints; configuration model.

1. INTRODUCTION

The constant growth of the Internet implies the creation and deployment
of an ever increasing number of network services, each of which is
becoming more complex in its turn. In this context, the network
configuration becomes more difficult and error prone. Some of the causes
are the diversity of configuration approaches and information repositories
used by the configuration tools.

In plus, the main network configuration approaches, such as the
command line interfaces (CLIs),"* the Simple Network Management
Protocol (SNMP),” the policy-based management (PBM),* the NetConf
protocol,” etc., lack configuration rules that capture the dependences and
constraints that characterise the network service configuration and lack
adequate logical formalisms that could be applied to the information
repositories to validate the configuration integrity and consistence.

4 Rudy Deca, Omar Cherkaoui and Daniel Puche

These approaches therefore do not take into account the dependences and
hierarchy that exist among the device parameters that express the service at
device-level, the heterogeneity of the configuration means and the
interactions between heterogeneous management and configuration modes.

The Meta-CLI Model proposes a solution for these configuration
inconsistencies. Our model captures the features of the CLI, such as the
context and parameter dependences of the commands, as well as the service
properties into validation rules. It translates the configuration information
into trees and validates them using the appropriate rules. Based on the Meta-
CLI Model, we have implemented the ValidMaker module, and incorporated
it in a policy provisioning VPN tool.

This section presents the dependences between the commands and/or
parameters that are translated into Meta-CLI concepts and discusses the
properties of the network service configurations. Section 2 presents the
concepts, operations, functions and properties of the Meta-CLI Model tree
structures and the validation rules and procedures that translate and validate
the service properties. Section 3 presents the ValidMaker tool and Section 4
draws conclusions.

1.1 Configuration Dependences

Several types of dependences exist in the network device configurations.

A. Syntactic parameter constraints The CLI commands’ syntax enforces
the constraints regarding the order and number of parameters.

1. Fixed number of parameters The number of parameters (which can be
mandatory or optional) must be correct, otherwise the command fails.
EXAMPLE The command to configure a primary IP address on an interface

requires 2 parameters: the interface /P address and the mask.

2. Fixed sequential order of parameters. In a configuration command or
statement, the parameters are ordered.

EXAMPLE In an extended access list, the order of the IP address and the

mask parameters in the above-mentioned command is fixed.

B. Parameter and command existence dependences Some parameters and
commands can only exist in specific circumstances.

1. The existence of a parameter depends on another

EXAMPLE In an access list, the timeout parameter, which specifies the

duration of a temporary access list entry, can exist only if the access list

entry is dynamic (i.e. has the dynamic parameter).

2. Context dependences The existence of a parameter or a command
depends on the context (mode). Thus, a parameter can only be
configured, modified or created in an equipment using a command in a
specific configuration context (mode).

Configuration Model for Network Management 5

EXAMPLE When specifying the IP address of an interface, the name of the

interface must be specified by a prior command that “opens” it to the user,

who can then access and manipulate its resources or parameters (e.g.: IP
address, MTU, bandwidth, etc.).

3. Result dependence The order of some commands can be fixed. In this
case, the success of a command depends on the successful completion of a
previous one.

EXAMPLE The configuration of a link bundle consists of bundling several

similar physical point-to-point links between 2 routers into 1 logical link. By

default, at each change in bandwidth in a link bundle, the combined amount
of bandwidth used on all active member links is propagated. Optional
features are available, by configuring the following parameters.
. Automatic propagation, which sends the bandwidth changes to
upper layer protocols for the bandwidth threshold.

II. Bandwidth threshold, which sets the value of the threshold. If the
actual bandwidth is smaller or equal, it is propagated, otherwise
the nominal bandwidth is transmitted.

If we invert the configuration order of these 2 parameters, the threshold will

not be set, since it requires the existence automatic propagation.

C. Value dependences among parameters

1. Parameters of the same command are dependent

EXAMPLE When specifying a classful IP address, the net mask must be

consistent with the first two bits of the IP address. For instance, the B class

IP address starts with the bits 70 and has the mask 255.255.0.0.

2. Parameters of different commands on the same device are dependent.

EXAMPLE An access list is identified by its number parameter, which is

referenced when the access list is attached to an interface. If we change this

ID number in one place, we should change it likewise in the other, lest the

functionality is lost. Parameters that reference each other may have the same

or different names.

3. Parameters on different devices are dependent

EXAMPLE The connectivity between 2 devices requires the IP addresses of 2

interfaces directly connected to be on the same subnet.

D. Parameter Hierarchy and Service Composition In a configuration, there
is a hierarchy of elements from simple to complex, namely from the
parameters, going through several levels of aggregation, up to the
network services. This grouping expresses the common goal and of the
components and the dependences that exist among them.

1. Grouping parameters under commands. At the bottom, several
parameters can be configured simultaneously using commands or
statements, which group them based on logical links.

6 Rudy Deca, Omar Cherkaoui and Daniel Puche

EXAMPLE An access list entry command specifies several packet parameters
to be matched, such as: source and destination addresses, direction of the
packet, protocol, port, whether it is dynamic or not, timeout, etc. Various
dependences among some of these parameters have already been highlighted

in the examples in the previous paragraphs § A and § B.1.

2. Grouping commands under services. The commands can be grouped as
well, if they serve a common goal, i.e. a feature or a service. For instance,
an access list is composed one or more access list entries, which are
bound by the common access list number.

3. Network service composition. A network service can rely on simpler
network services, according to a recursive, hierarchical model.

EXAMPLE. A Virtual Private Network (VPN) service requires: a network

tunneling, e.g. through LSPs provided by an MPLS protocol, BGP

connectivity (e.g. by means of neighbors), for the provider’s backbone
network, and IGP connectivity between the customer sites and the backbone,

e.g. by means of RIP or OSPF protocols.

In complex services, such as BGP MPLS-based VPNs, VLANS, etc.,
there are multiple dependences at different hierarchical levels.

1.2 Dependences among network service components

Due to their complexity, the dependences can exist at different levels
within network services, from parameters to sub-services.

1. Parameter and command dependences As already shown, the parameters
and commands that compose the services can have their intrinsic, lower-
level, dependences, which can be either independent or dependent on the
device environment (software and hardware).

EXAMPLE The dependence C.1 is generic, whereas D.2 is command

implementation-specific.

2. Sub-service dependences. At the top of the service hierarchical structure,
there are higher-level dependences among the component sub-services.
These dependences are dependent on the service- and network-level
information, e.g. network topology, technology, protocols, etc., rather
than on the devices, and span multiple equipments.

EXAMPLE If several customer sites use overlapping address spaces and are

connected to more than one VPN, the corresponding PEs must ensure traffic

isolation among the various VPNs by enforcing specific constraints on their
forwarding tables.®

These properties are high-level and generic, and need to be transposed
into concrete, lower-level properties, by adapting to concrete network and
equipment environments, in order to be applicable to the configuration.

Configuration Model for Network Management 7

For instance, a VPN service can be materialized by a provider tunneling
technology such as the Multi-protocol Label Switching (MPLS). The MPLS
may run on an IP network and use the multi-protocol Border Gateway
Protocol (MP-BGP) for VPN routing advertising among the edge routers and
the MP-BGP may use the direct neighbors for configuration on the edge
routers. We will explain these concepts and features in the following
example.

1.2.1 MPLS VPN Service Example

A VPN is a private network constructed within the network of the service
provider, which ensures the connectivity and privacy of customer’s
communications traffic.” For this purpose, the sites (which are contiguous
parts of networks) of the customer network are connected to the provider’s
network through direct links between the interfaces of the devices that are at
the edges of these networks, i.e. the Customer Edge device (CE) and the
Provider Edge device (PE), as shown in Figure 1 (site 3 has been omitted
from this representation, to save space).

The VPN service in the example is configured on the PE routers using
the I0S' commands, without loss of solution’s generality and validity since,
as mentioned before, the generic service properties must be transposed into
concrete properties by mapping the configuration components to specific
CLIs, such as IOS, JUNOS,? etc. The provider specifies VPN routing
information (by means of the VPN Routing and Forwarding tables — the
VRFs) on the PE routers’ interfaces that are connected to the corresponding
CE routers of the customer’s sites. (There are many implementations of the
VPN service. Our example uses the BGP MPLS-based VPN.) Figure 2(a)
presents some highlights from the configuration file of the PE-I router,
which are explained in the following paragraphs. (A configuration file
contains lists of commands, grouped by contexts, which customize the
parameters of various configuration components, e.g. interfaces, protocols,
security, etc. of network equipments, such as routers and switches.)

Commands 1-4 create and define the VRF Blue. This VRF is then
assigned by command 8 to the appropriate interface that connects the PE
router to the customer’s network. The PE router must be directly connected
to the CE router of the customer site and learn local VPN routes. Command
5 configures the interface to be used for this router’s connectivity inside the
provider network and command 6 assigns it an IP address.

Command 10 illustrates the configuration of the OSPF process in the
VRF Blue and command 11 specifies the network directly connected to the
router (and containing the interface IP address configured by command 9).
Command 12 ensures that the OSPF process advertises the VPN routing

8 Rudy Deca, Omar Cherkaoui and Daniel Puche

information learned from across the provider’s network by means of the
BGP protocol, into the CE router.

Provider Network

11.1.1.0/24
PE-1

11.1.2.0/24

111110 11.1.1.20 ‘ .1.2.20 11.1.2.10

Figure 1. VPN example. Customer sites 1 and 2 are linked through CE routers to PE routers,
which communicate over the service provider’s network

The PE router exchanges customer and provider VPN routing
information with other PE routers from the provider’s network using the
MP-BGP. Command 13 configures MP-BGP routing process by specifying
the local autonomous system and commands 14-19 add the routing
information necessary for the connection to other PE routers across the
provider’s network, i.e. autonomous system, interface type, number and IP
address used by the remote PEs. Notice that we use the simplest method to
configure the BGP process between PEs, namely the direct neighbor
configuration.

The BGP needs also its own address family, vpnv4, which allows it to
carry VPN-IPv4 in order to uniquely identify the addresses of different
customers (commands 23, 25) and to advertise the extended community
attribute (commands 24, 26).

1.2.2 VPN Configuration Properties

In this example, we can describe many properties, but we will restrict
ourselves here to only two properties that the configuration must have with
respect to the neighbor command and its relationships with other commands
(from the same PE router and from other PE routers).

PROPERTY 1 The address of the interface of a PE router that is used by
the BGP process for PE connectivity must be defined as BGP process
neighbor in all of the other PE routers of the provider.

EXAMPLE In Figure 2(a), a neighbor with the address 194.22.10.2 is
configured by commands 14-16. This corresponds to the IP address of the
Loopback0 interface of router PE-2. Conversely, the PE-I router’s
Loopback0 1P address, i.e. 194.22.10.1, must be defined as a neighbor of the
BGP processes of the other PE routers (PE-2, PE-3, etc.).

Configuration Model for Network Management

ip vrf Blue
rd 100:1
route-target import /00:10
route-target export /00:10

interface Loopback0
ip address /94.22.10.1 255.255.255.255

interface Ethernet 1/1
ip vrf forwarding Blue
ip address /1.1.1.10 255.255.255.0

router ospf 15 vrf Blue
© network 11.0.0.0 0.255.255.255 area 0
redistribute bgp /00 metric /

router bgp /100
neighbor 794.22.10.2 remote-as /00
neighbor 794.22.10.2 update-source Loopback0
neighbor 794.22.10.2 activate
neighbor /94.22.10.3 remote-as 100
ighbor 794.22.10.3 update-source L
neighbor /94.22.10.3 activate

P

address-family ipv4 vrf Blue
redistribute ospf /5

. address-family vpnv4
neighbor 794.22.10.2 activate
neighbor 194.22.10.2 send-community extended
neighbor 7194.22.10.3 activate
neighbor /94.22.10.3 send-community extended

a

Figure 2. Selected commands that configure a VPN service in the configuration file of the

© %2

PE-la:

'I: ip vrf: Blue

|
|
|
[
|

|- rd: 100:1
|- route-target
|- import: 100:1
|- export: 100:1
- interface
|- Loopback: 0
| |- ip address
|-ip: 194.22.10.1
|- subnet mask: 255.255.255.255
|- Ethernet: 1/1
| |-ip address
Jeip: 11.1.1.10
|-subnet mask: 255.255.255.0
- router
|-ospf: 15
| |-vrf: Blue
| |-network
| | |-area: 0
| Jip: 11.0.0.0
| |-wildcard mask: 0.255.255.255
|- redistribute:
|-bgp: 100
|-metric: /
- bgp: 100
|-neighbor: 194.22.10.2
| |-remote-as: 100
| |-update-source: Loopback0
| |-activate: ~
|- neighbor: 194.22.10.3
| |-remote-as: 100
|-update-source: Loopback0
| |-activate: ~
|-address-family
|- ipv4

|-redistribute
| |-ospf: 15
|-vpnv4
|-neighbor: 194.22.10.2
|-activate: ~
|-send-community: extended
|-neighbor: 7194.22.10.3
|-activate: ~
|-send-community: extended

b

provider edge router PE-/ (a), and the corresponding MCM tree PE-Ia that models them (b).

PROPERTY 2 The address family vpnv4 must activate and configure all of
the BGP neighbors for carrying only VPN IPv4 prefixes and advertising the

extended community attribute.

EXAMPLE In Figure 2(a), the commands 23, 24 activate and advertise the
extended community attribute of the neighbor 194.22.10.2, configured by
the commands 14-16 under the BGP process. We have here an instance of a
command whose various parameters are configured in two different

contexts.

10 Rudy Deca, Omar Cherkaoui and Daniel Puche

2. THE META-CLI MODEL

The Meta-CLI Model®™'® abstracts the configuration information of the
devices and network services into tree-like structures and the network
services configuration dependences and constraints into rules which it uses
to configure network services and to validate their consistence and integrity.

2.1 The MCM Trees and Nodes

The Meta-CLI Model develops the hierarchical architecture of the
configuration properties and information into the MCM tree concept.

DEFINITION 1 The MCM tree is a tree that has its name in the root and the
configuration contexts, the command names, and the command parameters
of a device configuration in its nodes.

EXAMPLE In Figure 2(b), the router (command 13) is a command mode
and the address-family (commands 20, 22) is its sub-mode. The commands,
e.g. ip address (command 6), are appended as children or descendants (node
10) of the command modes, e.g. interface (command 5, node 7) and sub-
modes to which they belong.

DEFINITION 2 An MCM tree node is a vertex of an MCM tree and
represents a CLI configuration mode, command name or parameter.

The MCM tree node contains intrinsic information, such as the data,
consisting of a fype (e.g. “subnet mask™) and a value sub-attributes (e.g.
255.255.255.255), a default value, possible values of the
commands/parameters, node operations, etc. and structural information. The
latter deals with the links and relationships between nodes, such as: child
nodes and the path, which consists of the data of the ancestor nodes starting
from the root.

DEFINITION 3 A node type represents a class or category of configuration
modes, commands or parameters. The type of a node N is denoted by N.type.

DEFINITION 4 A node value represents the value of the command or
parameter modeled by the node. The value of a node N is denoted by
N.value. The type of a MCM tree node is unchangeable whereas the value
may be changed.

DEFINITION 5 The node data represent the type and value of the node.
The data of a node N are denoted by N.data.

EXAMPLE The type, value and data of node 41 in Figure 2(b) are: N.type
= neighbor, N.value = 194.22.10.2 and N.data = neighbor:194.22.10.2,
respectively.

Configuration Model for Network Management 11

2.2 The Validation Rules

The Meta-CLI Model translates the CLI properties and combines them
with intrinsic tree properties into validation rules.

DEFINITION 6 A validation rule is a condition (constraint) or combination
of conditions that one or several MCM trees (and their components) must
satisfy.

The validation rules abstract the CLI properties of the commands and
configurations.

A few rule examples follow. A first group of simple rules indicate that a
node must have a specific attribute.

e A node N has a given value 7, i.e.: N.value=V (1a)
e A node N has a given data D, i.e.: N.data=D (1b)
EXAMPLE (1a) is false, if N is node 27 in Figure 2(b) and V' = 194.22.10.1.

DEFINITION 7 A node reference is the purposeful equality of the value or
data of two nodes. It represents the conceptual and functional identity of
some information located in two (or more) nodes.

We may thus have the value reference or data reference:

e A node N references the value of node P, i.e.: N.value = P.value (2a)
e A node N references the type of node P, i.e.: N.data = P.data (2b)
The following group of such rules checks whether a sub-tree or a tree S
contains a node N that has a given type 7, value ¥ or data D, respectively.

N € S, N.type=T (3a)
N € S, N.value =V (3b)
IN €S, N.data=D (3¢)

EXAMPLE (3a) is true, for S being the sub-tree of node 8 and 7' = ip.
Other simple rules are the following:
A node has an ancestor with a given type, value or data. “)
Two (sub)trees S; and S, contain (at least) a node each, N, and N,
respectively, having the same given value 7, i.e.:
dN1,N2,N1€ S1,N2 € S2, Nl.value = N2.value (52)

e Two (sub)trees S, and S, contain (at least) a node each, N, and N,,
respectively, having the same given data D, i.e.:

ININ2,NI1€ S1,N2 € S2, Nl.data = N2.data (5b)
There are also more complex rules. For instance, the following rule

corresponds to the configuration properties 1 and 2, stated in section 2.

e Let D be some node data, T a node type and {7;|i=1,...,n, (n> 1)}, a
set of MCM (sub)trees. If a tree 7, has a node N of the given data D, and
Np has a descendant Ny of the given type T, then all of the other trees 7},
contain two nodes N, and N, of identical data such that their values are
equal to the value of Ny. 6)

12 Rudy Deca, Omar Cherkaoui and Daniel Puche

/ e / N 7{

| PE-la: | | PE2a: 1 53 1

| I-interface: 2 |- interface: 2 (erface: 2

i | I Loopback: 0 H | I Loopback: 0 3 | Pkoopback; 0 3

D1 Jipaddress: H | I-ip address: 4 | |- ipXgdress) 4

Lo lipii9d.22100 M .. kip:[19422.103 s e FiIN[AR2T0. s

| I subnet mask: 255.255.255.255 M | |-subnel mask: 255.255.255 /55 6 | |-subI{mk: 255.255.255.255 6

|- router: 7 |- router: y/ - router: 7

| I-bgp: 100 8 | |- bgp: 100 | |-bgp: 100 8

S |- beighbor: 194.22.10.3 9 | - nighbor: 194.22.10. 9 | |- neighbor: 194\2.10.1 9

|| [|-remote-as: 100 0 || |-remote-as: 00 10 | | Fremoteas: 10

{1 | |- update source: Loopback0 I || |-update source: Loopbackd 1 | | | update sourck Loopbackd 1

| | |- activate: ~ 12 | | |- activate: ~ 12 | | | activate: ~ 12

I I-heighbor: 194.22.70. 131 | I-neighbor: 194.22.10.3 13 | I-ncighbor: 194.22.182 13

| | I remote-as: /00 14 | |- remote-as: /00 14 | | | remote-as: 100 14

|- update source: Loopback0 15 +-+ |update source: Loopback0 15 |- update source: Lodgback0 15

i | I activate: ~ 16 | |- activate: ~ 16 | |- activate: ~ 16

: |- address-family: 17 |- address-family: 17 |- address-family: 17

|- vpnvd: 18 |- vpnva: 18 |- vpnv4: 18

F 19 |- neighbor: 194.22.10.1 19 |- neighbor: 194.22.10.1 19

| | [activate: ~ 20 | factivate:~ 2 | activate:~ 2

i | _|- send-community: extended 21 | I send-community: extended 21 | |- send-community: extended 21

i |_ 2 |- neighbor: /94.22.10.3 2 - neighbor: 194.22.10.2 2

| - activate: ~ 2 |- activate: ~ 2 - activate: ~ 3

i |- send-community: extended 2 |- send-community: extended | 24 |- send-community: extended | 24
i

T, T, Ty

Figure 3. Three MCM trees, PE-1a, PE-2a and PE-3a. The arrows indicate the nodes of the
first instance of rule (6).

We may apply this rule to the MCM trees PE-la, PE-2a and PE-3a,
shown in Figure 3, for D = Loopback:0 and T = ip. The arrows depict the
rule instance that has i = / and j = 2 and 3. We see in the tree PE-Ia that
node 5 (corresponding to Ny), of type ip is a descendent of command 3
(corresponding to Np) having the data Loopback:0 and that the nodes 9
(corresponding to Ny) and 19 (corresponding to N,), of PE-2a and PE-3a,
respectively, reference the node S of PE-Ia.

A validation algorithm compares the set of value of nodes 5 of PE-2a
and PE-3a with the sets of values of the nodes 9, 13 of PE-la. It also
compares the set of data of nodes 9, 13 with the set of data of the nodes 19,
22. This is shown in Figure 3 by the boxes surrounding the respective leaves.
Since these set equalities are true, the MCM trees are valid with respect to
the first instance of the rule.

3. META-CLI VALIDMAKER MODULE FOR
CONFIGURATION MANAGEMENT

The Meta-CLI ValidMaker module implements the Meta-CLI Model
solution for the validation of the network configurations. It provides
consistence and synchronization of the configurations achieved with network
configuration management tools.

The configurations of the network equipments such as the routers,
switches, etc., are provided by configuration management tools, based on the
centralized information stored in a network management information base."'
The configurations can be also changed in a CLI-based mode. The

Configuration Model for Network Management 13

interactions between these heterogeneous modes of operation are managed
by the ValidMaker module, based on the configuration information from the
network equipments, the configuration tools and the network information
model.The role of this module is to validate the device configurations in a
dynamic and heterogeneous context. Since the changes were neither
predicted by, nor included in, the configuration solution provided by the
tools that enabled the deployment of the services, the tools cannot intervene
in a coordinated fashion. The ValidMaker module intervenes to validate,
maintain, restore and control the consistence of the network. It can be
embedded in each service provisioning tool and ensure thus an error-free,
consistent service provisioning.

' ¥ ¥
- 3 ¥
Configuration Network
management 4ools management
iffbrmation

base
Meta-CLI ValidMaker Module ase

Service Editor

Creation of set of Service
rules fora FEEH Activation

Seript/Algorithm
Editor

- N
2 = = oF
€12 Event Notifier 5

®)
Runni‘\

configuratic

1]

Validation Enforcer

ilils
/ Trees
Confi y

files

L Sets of
Validation Service
Rules Rules

2]

Figure 4. Conceptual View of the Meta-CLI ValidMaker.

The components of the ValidMaker module are presented in Figure 4.
The Service Editor allows the service creator to generate a set of rules,
algorithms and scripts, for each service, the Service Activation allows the
network administrator to activate network services for the specific network
equipments, the Event Notification monitors the status of the network and
the Validation Enforcer enforces the rules on the equipment configurations.

4. CONCLUSIONS

The Meta-CLI Model offers multiple possibilities of utilization in various
contexts of the configuration management process: service configuration and

14 Rudy Deca, Omar Cherkaoui and Daniel Puche

consistence validation, control of the consistence of data stored in
management information bases, network device testing, etc.

This paper presents the application of the Meta-CLI Model to the
validation of network service configuration consistence and integrity. The
ValidMaker module creates validation rules, algorithms and strategies for all
of the intermediate steps of the configuration process performed by the
service provisioning tools. The validation rules are grouped in sets
representing snapshots of the service configuration process and are therefore
assigned to validate each configuration step performed by the provisioning
tools. When the configuration is complete, the groups of validation rules,
algorithms and scripts that are associated with the service remain on standby
and intervene upon notification to restore the coherence of the system.

The ValidMaker validation solution provides consistence and
synchronization of the configurations achieved with network configuration
management tools. It may be used in a wide range of contexts, e.g. it can be
embedded into the NetConf configuration management operations like
validate, commit, etc.

REFERENCES

1. B. Hill, Cisco: The Complete Reference (Osborne, McGraw Hill, 2002).

2. T. Thomas II, R. Chowbay, D. Pavlichek, W. Downing III, L. Dwyer III, and J.
Sonderegger, Juniper Networks Reference Guide (Addison-Wesley, 2002).

3. RFC 1155-1158, 1901-1908, 2263, 2273, 2573, 2574, http://www.ietf.org/rfc/rfexxxx.txt.

4. M. Sloman, Policy Driven management for Distributed Systems, Journal of Network and
Systems Management, Vol.2, No.4, 1994,

5. R. Enns, NETCONF Configuration Protocol, Internet-draft, http://www.ietf.org/internet-
drafts/draft-ietf-netconf-prot-03.txt, June 2004.

6. R.Bush and T. G. Griffin, Integrity for Virtual Private Routed Networks 22" Annual Joint
Conf. of IEEE Computer & Comm. Society (INFOCOM 2003), San Francisco, USA, 2003.

7. 1. Pepelnjak and J. Guichard, MPLS and VPN Architectures (Cisco Press, 2001).

8. O. Cherkaoui and R. Deca, Method and Apparatus for Using a Sequence of Commands
Respecting at Least One Rule, US Patent Application N° 60/458,364, March, 2003.

9. R. Deca, O. Cherkaoui, and D. Puche, A Validation Solution for Network Configuration,
Proceedings of the 2 Annual Communications Networks and Services Research
Conference (CNSR 2004), Fredericton, NB, Canada, May, 2004.

10.S. Hallé, R. Deca, O. Cherkaoui, and R. Villemaire, Automated Verification of Service
Configuration on Network Devices, Article accepted at the Conference on Management of
Multimedia Networks and Services, (MMNS 2004), San Diego, USA, Oct. 2004.

11.0. Cherkaoui and M. Boukadoum, Managing Network Based VPN with Policies, Paper
submitted to The Telecommunications Journal, 2003.

