ON DISTRIBUTED SYSTEM SUPERVISION - A
MODERN APPROACH: GENESYS

Jean-Eric Bohdanowicz', Laszlo Kovacs?, Balazs Pataki’, Andrey Sadovykh3

and Stefan Wesner

'EADS SPACE Transportation, 66, route de Verneuil, BP 3002, 78133 Les Mureaux, France;
’MTA SZTAKI, Computer and Automation Research Institute of the Hungarian Academy of
Sciences, Budapest, Hungary; °LIP6, Laboratoire d’Informatique, Université Paris 6, 8, rue
du Capitaine Scott, 75015 Paris, France; *HLRS - Stuttgart University, High Performance
Computing Centre Stuttgart, Allmandring 30, 70550 Stuttgart, Germany.

Abstract: This article presents limitations of current network management standards in
the context of comprehensive distributed system supervision. As a proposed
solution, the article describes the GeneSyS project achievements, a modern
approach allowing straightforward integration of all monitoring/control means,
as well as providing basic intelligence capabilities. These issues are illustrated
on several industrial examples.

Key words: SNMP, GeneSyS, supervision, distributed management, intelligent agent,
Web-Services.

1. INTRODUCTION

For more than 30 years, the information systems have moved forward
from a single computer to distributed computer societies.

These new information systems involve different heterogeneous compo-
nents working together and include groupware, collaborative engineering,
distributed simulation and distributed computation resources management
(GRID) systems

The maintenance activities of such systems include:

e Application management including deployment, set-up, start, stop,
hold/resume, configuration management (for instance, for redundancy
management purpose) and resource management;

304 J.-E. Bohdanowicz, L. Kovacs, B. Pataki, A. Sadovykh and S. Wesner

e Operating systems management comprising resource usage monitoring
and control;

Time synchronisation;

e Network management including parameterisation and performances
(e.g. dynamic control of bandwidth allocation) and monitoring;

Security management, like authentication/authorisation control;

e Archiving and etc.

The difficulty of these tasks depends on the network deployed, the com-
ponents spread, the number of components, the availability of compatible
management tools and the infrastructure. Working with thousands of pa-
rameters simultaneously becomes uneasy without intelligent solutions cate-
gorising, synthesising and filtering them, as well as situation pattern recogni-
tion and prediction mechanisms.

Historically, the principles of network supervision are older than those
governing the frameworks and mainly based upon the SNMP protocol (and
its extensions). There exist many commercial frameworks, like Unicenter
TNG, HP OpenView, etc, using SNMP not only for network management,
but also for application management. These frameworks inherit SNMP ad-
vantages: performance, maturity for network management, multiple com-
patible devices; as well as well known disadvantages: lack of security (UDP
based), lack of complex data types support that makes it difficult to build
intelligent solutions.

There exists a JMX (Java Management Extension) specification that
solves earlier mentioned issues for Java platform systems. Besides, there
exist frameworks (IBM Tivoli, etc.) using middleware standards, like the
OMG CORBA.

However, several common constraints can be identified for available su-
pervision technologies and frameworks:

o Interoperability issues: Components written on different languages us-
ing different toolkits, which are supposed to use the same architecture
specification, may not be capable to co-operate on a full scale.

e Components portability: Often components are built to work only un-
der their native operating systems like MS-Windows or UNIX. They are
very sensible to transport mechanism and to low level communication
protocols, in general.

¢ Development/deployment complexity: Many commercial applications
have proprietary APIs that makes it difficult to create new agents and to
plug them to the existing supervision systems.

o Non-flexible architecture: When agent and visualisation tools are real-
ised in the same component, upgrades of the console impact agent func-
tionality and vice versa.

On Distributed System Supervision - A Modern Approach: GeneSyS 305

¢ Dedication to a particular monitoring layer, lack of comprehensive
solutions: For instance, there exist various application layer tools to su-
pervise Oracle database. It would be very useful to get simultaneously the
system information and network statistics to better control the system.

o Lack of intelligence support: Dealing with thousands of relevant pa-
rameters simultaneously is a laborious task

e Lack of integration capability: Often application management can’t be
supplemented with existing network management solutions due to the
lack of integration capability.
The next section introduces the GeneSyS project intended to overcome

these limitations.

2. GENESYS

GeneSyS (Generic System Supervision) is a European Union project
(IST-2001-34162) co-funded by the Commission of the European Communi-
ties (5th Framework). EADS SPACE Transportation (France) is the project
Co-ordinator, with University of Stuttgart (Germany), MTA SZTAKI (Hun-
gary), NAVUS GmbH and D-3-Group GmbH (both of Germany) as partici-
pants. GeneSyS started in March 2002 and is due to be completed in October
2004, The project is aimed at developing a new, open, generic and modular
middleware for distributed systems supervision. Besides, the consortium in-
tends to make GeneSyS an open standard in the distributed system supervi-
sion domain.

2.1 Proposed Solution

The protocol based supervision architectures (ICMP, SNMP) have the
most remarkable interoperability characteristics due to the fact that, their
message format is strictly fixed and they do not impose any limitations on a
component implementation, requiring only the protocol support. This makes
their usage independent from operating systems and programming lan-
guages.

Their force is also their weakness. The strict message format makes it
difficult and often impossible to operate with a custom data required for
modern supervision systems. The network management protocols are insepa-
rable from their transport protocols.

Meantime, Web technologies provide with flexible means to build cus-
tom, XML based protocols and portable transport mechanisms independent
from network protocols (Web Services).

306 J.-E. Bohdanowicz, L. Kovacs, B. Pataki, A. Sadovykh and S. Wesner

Our proposal is to combine Web technologies to build a supervision mid-
dleware, which shares advantages of protocol based architectures: operating
system and programming language independency; and provides flexible and
customisable messaging protocol, as well as network portability.

2.2 Web Technologies as a Platform for a Supervision
Framework

With the advancement of Web technologies, more and more works ap-
peared to introduce these technologies in the world of supervision (DMTF
WBEM, OASIS WSDM, etc.). GeneSyS was one of the firsts to bring the
Web Services to this domain.

As a result of our research, an agent based approach was implemented
which separates the monitoring/controlling and visualisation of monitoring
data. Web Services technologies were chosen as the base for GeneSyS mes-
saging protocol.

Basing the supervision infrastructure on agents seems logical, because
the monitoring of IT entities requires properties that are available with soft-
ware agents. A software agent is a program that is authorised to act for an-
other program or human (see?). Agents possess the characteristics of dele-
gacy, competency and amenability that are the exact properties needed for a
monitoring software component.

Delegacy for software agents centres on persistence. Delegacy provides
the base for an agent, which makes it an autonomous software component.
By taking decisions and acting on their environment independently, software
agents reduce human workload by interacting with their end-clients when it
is time to deliver results. In case of GeneSyS, the agents reside either on the
computer hosting the monitored entity or on a computer that is able to com-
municate with the monitored entity.

Competency within a software environment requires knowledge of the
specific communication protocols of the domain (SQL, HTTP, API calls). A
monitoring agent competency is to have knowledge about the monitored en-
tity to be able to collect runtime information from it or to control it with
commands.

Amenability in intelligent software agents can include self-monitoring of
achievement toward client goals combined with continuous, online learning
to improve performance. GeneSyS makes no restriction on its agents or on
their intelligence or autonomous operations, but provides the ability to in-
clude it as found necessary by agent writers and also provides some middle-
ware components (like monitoring data repository) that can be used to im-
plement amenability.

On Distributed System Supervision - A Modern Approach: GeneSyS 307

Openness and standards based solution is one of the key requirements of
GeneSyS especially in the light of the Consortium's intention to turn Gene-
SyS itself into an industry standard. After a number of iterations, we had two
candidates for the realisation of the communication protocol:

o InterAgent Communication Model (ICM - FIPA based) (cf.%)
e Web Services technologies (see”)

The ICM framework has not been designed for monitoring or supervision
needs but is a general communication framework for inter-agent communi-
cation. The Web Services framework standardised by the W3C is a generic
framework for the interaction of Services over the Internet and is designed to
exploit as much as possible existing protocol frameworks such as SOAP and
HTTP. The Web Services framework is in contrast to ICM more a hierarchi-
cal or client-sever communication model.

Web Services has a major problem with respect to performance. The use
of an XML based protocol cannot be as efficient as a binary protocol due to
the text processing, which is highly performance consuming. Additionally,
the most common transport protocol used for SOAP messages, the Hypertext
Transfer Protocol (HTTP), is not very efficient as it lacks stateful connec-
tions. However we are convinced that these problems can be solved as Web
Services potentially can use different protocols. The feature of alternative
protocol bindings is already used for example in the .NET framework using
Remoting, which uses different (proprietary) protocols. As this problem is
not solely part of GeneSyS but the whole community including the major
software vendors that are committed to Web Services will face this problem,
the assumption that this limitation will disappear seems reasonable.

After a detailed comparison of these two technologies, we selected Web
Services, including the SOAP XML based communication protocol as a base
for GeneSyS. Going on the Web Services path, we have a strong industry
backing with tools available for many languages. With this decision, we also
defined the first instance of a Web Services based supervision system that
has recently been followed by other companies and standards organisations
(OASIS WSDM, DataPower Technology’)

On top of SOAP and Web Services, a new layer of the GeneSyS protocol
has been established called the GeneSyS Messaging Protocol (GMP). Gene-
SyS Messaging Protocol is a lightweight messaging protocol for exchanging
structured supervision information in a decentralised, distributed environ-
ment. It is an XML protocol based on XML 1.0, XML Schema and XML
Namespaces. GMP is intended to be used in the Web Services Architecture,
thus, SOAP is considered as a default underlying protocol. However, other
protocol bindings can be equally applied. Using XML to represent monitor-
ing data was a natural choice. XML is a widely accepted industry standard
that supports structured representation of complex data types, structures

308 J.-E. Bohdanowicz, L. Kovacs, B. Pataki, A. Sadovykh and S. Wesner

(enumerations, arrays, lists, hash maps, choices, and sequences) and it can be
easily processed by both humans and computers. With the wide acceptance
of XML, integration with supervised application and 3d party monitoring
solutions can be smoothly achieved, since XML toolkits are available for

every platform.
2.3 Basic Components and Communication Model

This section provides implementation details, illustrating common super-

vision framework architecture.
Fig.1 depicts the basic GeneSyS functionality.

i
— i Management
= ! Facilities
- |
T I — —-‘2.““[)'i_s-cover Agent
Supervisor | bl f
agent |
% (agent) I 3. Ag?nt List =
Eo Bllag g
22 =25 |llS
89 &8 g s 2
= 3z || =3 5
©] v ©
Z] ég Ne
| = |
' I
- =
i
3 |
t - i i I
% Supervised Entity
et |

Figure 1. GeneSyS Communication Model

As showed above, supervision process involves several generic compo-
nents. The Delegate implements an interface to the Supervised Entity (Oper-
ating System, Network, Applications, etc.), retrieves and evaluates monitor-
ing information and generates monitoring events. The Supervisor is a remote
controller entity that communicates with one or. more Delegates. It may en-
capsulate management automation functionality (intelligence), recognising
state patterns and making recovery actions. The Console is connected to one
or many Supervisors to visualise the monitoring information in a synthetic
way, and to allow for efficient controlling of Supervised Entity. The Core
implements Directory Server, a location storage being updated dynamically.

On Distributed System Supervision - A Modern Approach: GeneSyS 309

The agents are registered in the Core with the purpose to be discoverable
by other agents. Hereafter, the “agent” is a generic term comprising the Su-
pervisor and the Delegate.

Both “pull” and “push” interaction models are available. The pull model
is realised by the Query/Response mechanism, while the Event Subscribe
mechanism secures the push model. All interactions between agents are pro-
vided for by the SOAP-RPC. The flexibility of XML standard is used to en-
code communication messages (GeneSyS Messaging Protocol) supporting
complex data structures and custom data types.

2.4 Integration Capability
As a result, transport mechanism (SOAP-RPC) and the GeneSyS archi-

tecture itself are very flexible. That allows smooth integration with existing
management frameworks.

Supervisor | Supervisor %
(agent) x (agent) =
(D
193]
~
W
O
Visio Conference | QJ
Server ~
. -
M T Entity |
S}ﬁanaﬁemeﬂ nxt‘/ g %
; =
5
o
ol
~+

Figure 2. GeneSyS - SNMP Collaboration

Fig. 2 gives an example of collaboration between GeneSyS and SNMP.
An SNMP Management Entity, a Network Management System, is plugged
to a GeneSyS delegate, which makes network management information
available at the administrator console. Thus, this information can be proc-

310 J.-E. Bohdanowicz, L. Kovacs, B. Pataki, A. Sadovykh and S. Wesner

essed together with information of other agents (operating system, middle-
ware, applications, like Visio Conference Server on the Fig. 2) in order to
synthesise all the metrics in a single global view.

Hence, this SNMP bridge concept gives opportunity to benefit from both
network and application level management. In that way, it is used in some of
GeneSyS network agents mentioned lately in the following applicability sec-
tions.

2.5 Intelligence

An inherent property of software agents is autonomy, that is, the ability
to work without the intervention of other programs or humans. Autonomous
work requires some level of intelligence so that the agent can react on
changes in its environment or can make decision based on its internal logic
driven by rules or other means. Intelligence in agents is also required be-
cause in a complex environment with some 10 or 100 monitored entities, an
administrator could be easily flooded with low level warnings like “memory
is running low” or “maximum number of users almost reached”. Instead, the
administrator first needs a general, summarised view about the health of the
systems and then can look at the details as necessary.

The GeneSyS framework provides API hooks for adding intelligence to
agents as well as components for supporting the implementation of intelli-
gence. Intelligence can be accomplished in several ways, which are only out-
lined here, as the actual implementation of this feature is not a main goal of
GeneSyS:

e Specific Implementation: the “intelligence” to react on the system status
can be done as part of the program code of the agent.

e Parameter based Generic Solution. The rules can be configured through
parameters. A basic example is a “Threshold Miss Agent” where the pa-
rameters would be min and max values.

e Rule Based Systems. In complex settings, the usage of rule based sys-
tems could be an option where the rules can be expressed in an external
file e.g. based on JESS.

o Workflow based systems. Another option could be to use workflow lan-
guages such as BPEL4WS to define workflows that act depending on
events receive.

GeneSyS provides a data Repository that is connected to the middleware
bus via the same API as any other agents, which means its functionality is
available to all other agents connected to a given CORE. The Repository
provides a generic XML data storage facility. Agents can store monitoring or
control messages in the Repository, which can later be queried. With the use
of the Repository, an agent can base its decisions on archived data, for ex-

On Distributed System Supervision - A Modern Approach: GeneSyS 311

ample, by analysing past messages for detecting trends in the operation of
the monitored entity. More over, the Repository is also capable for storing
control messages — or a list of control messages — which can be “replayed”
any number of times at any time it is necessary.

The Agent Dependency Framework (ADF) is another aid for adding in-
telligence to monitoring. ADF allows defining dependencies of monitored
entities. To be more precise, not directly the dependencies of monitored enti-
ties but the dependencies of the agents monitoring the entity can be de-
scribed. Each delegate agent can describe in its component description
(which is stored in the Core) what agents it depends on. The dependency
forms a directed graph that should never cause a circular reference. Once the
dependency of each delegate is described, the dependency graph can be que-
ried from the Core. Based on the dependency graph, a special supervisor
console view can be created that draws a tree view of the dependent entities
and gives a quick overview of the health of the system with green, yellow
and red light depicting a healthy, questionable or erroneous state of the de-
pendant systems. This way of visualising the monitored system with all its
dependent components provides a way for tracking root cause of problems.
For example, an administrator seeing a red light in the top of the dependency
hierarchy can expand the tree until he finds the subsystem that generates the
red light and which has been "propagated" up in the dependency tree. In the
same way, an autonomous intelligent agent can walk this tree and find the
root cause of the problem and can work only with that subsystem that was
the source of the problem.

3. APPLICABILITY RESULTS

This section illustrates flexibility, integration capability and basic intelli-
gence features with several real-life examples of the GeneSyS framework in
use. The scenario was intended to prove the viability of the GeneSyS con-
cept. Common system and network agents were developed to reflect system
administrator needs. Custom application agents were used to monitor the
system functional status (application load, resources used by applications,
etc), user activities (documentation in use, on-line meetings, access viola-
tion, etc).

The main goal of these scenarios was to prove the capability of Web Ser-
vices based distributed system to work in a heterogeneous environment. It
includes support of different operating systems (Windows, Linux), pro-
gramming languages and toolkits (C/C++/gSOAP, Java/Axis, .Net). Besides,
while developing custom application agents (Oracle, EDB, GTI6-DSE,
Mbone, Tomcat), the integration capability was ensured.

312 J.-E. Bohdanowicz, L. Kovacs, B. Pataki, A. Sadovykh and S. Wesner

3.1 Distributed Training Scenario

This scenario was brought by EADS SPACE Transportation, the Euro-
pean aerospace industry leader. It concerns HLA-based simulations. HLA
(see®) is a DoD standard for real-time interactive simulations. This standard
is widely used in military, aerospace and automotive industries. The Distrib-
uted Training Scenario involves 4 real-time simulators playing different
roles in joint training sessions of astronauts and ground controllers in order
to prepare them in advance for contingency situation during the ATV to In-
ternational Space Station (ISS) approach manoeuvre. The trainee teams are
located in different places all over the world (Toulouse, Houston, Moscow),
which imposes performance constraints on a supervision solution.

The flexible GeneSyS information allowed customising of System and
Network agents and development of scenario specific Middleware and Ap-
plication agents (RTI middleware, DIS-RVM application).

| System agents
S, G ook agow]
» L
Network status @,—- Network agents
Yo @~ i gns |

| DIS-RVM agents

Global Status

e sateata e "

i Control Host ‘? V © =@

7y all agenis
= DIS-RVM :
= Console ™

Information Summarising
Supervisor Level

—
., S Internet
________________ .,—-T-‘-_:--:-T-—.—.,—\:::_::———_-‘—‘-——-
/ﬁ.—.—.—.—.m EADS-ST Validation Platform -——:@

r r “

I : I
c e } . |
S oo 1 O e | ., o o S o
= ¢ Asimov v ¢ Tolkien % & Herbert w7 King %
< Bl i ATV Federate ;E H - H
=S 1SS Federate ATV-CC Federate NP Server
g 3 MOC Federate Federution Manager “‘“ o INTE Servex
ITonl - DumunanliEis - Dawaew Syste
c % tem Agent @ Z}sum P
2 =t Network Agent Agent S
g @ RTI Agent @ \‘;t ?:.ct)w:nk @ :
£0 DIS-RVM Agent Agen
<]
= Agent

Figure 3. Intelligence in Distributed Training Supervision

Figure 7 depicts the deployment schema and gives intelligence imple-
mentation hints.

The "synthetic view" and "agent dependencies framework" approaches
were used to provide administrators with a run-time system operation status
summary and to allow a fast problem location.

Thus an administrator could browse down the agents to find a problem
origin and then maintain the system.

On Distributed System Supervision - A Modern Approach: GeneSyS 313
3.2 Web Servers Scenario

The Web Servers Monitoring validation scenario aims at using GeneSyS
for monitoring and controlling web servers and web based on-line services.

A Web Server is typically more than just an HTTP daemon: it may in-
voke external programs and those programs may use other programs for their
execution, and so on. A typical Web Server can include, for example, an
Apache server with a PHP interpreter and a MySQL database used by a
number of PHP application. The Web Server is considered "healthy" only if
all of these components are in good condition. Because these components
may be dependent of each other it is not enough to have separate agents for
all entities but these agents must be connected in a way to reflect the de-
pendencies of the monitored entities.

CGl scripts [PHP | e
HTTP server @

Web server

RDBMS

Database server

Figure 4. Web Application - A Common Deployment

Going on with the previous example, a Web Server could be considered
healthy if the Apache daemon is up and running, the PHP applications it
hosts respond in an acceptable time interval and the MySQL server has
enough space for new records. If any of these conditions are not met the sys-
tem should notify the administrator. More over, the unresponsiveness of
Apache may be the result of a number of other dependent subsystems, like
the operating or network system. So the "monitoring entity" could be divided
into some more elements, namely the Apache server itself, the underlying
operating system and the network connecting the server machine to the outer
world. In this case even if Apache is found to be alive the operating system
agent may report that the CPU load is too high and this could cause in a
short time the Apache server being unable to respond to requests.

The Web Servers Monitoring scenario extensively uses the Agent De-
pendency Framework of GeneSyS, which provides the ability to describe the
dependencies of system components and use this dependency graph to detect
and find root cause of an erroneous system state.

314 J.-E. Bohdanowicz, L. Kovacs, B. Pataki, A. Sadovykh and S. Wesner

4. CONCLUSION

This article presents an innovative supervision middleware intended to
supplement classical distributed management approaches based on SNMP.
The proposed framework has great integration capability illustrated on dif-
ferent real-life applicability examples. That permits using it in conjunction
with existing network management infrastructure.

In comparison with other solutions, among other advantages, the authors
would like to emphasise that the GeneSyS architecture is open to be ex-
tended with custom agents for all kind of applications.

The validation showed that, besides some ergonomics and performance
issues, the solution is ready for the large community of the Internet users.
That is why, generic components for system and network monitoring, as well
as, visualisation tools, service components and development toolkits were
released under open source policy and can be found at the GeneSyS Source-
Forge repository (see’)

REFERENCES

—

. GeneSyS project official web-site: http://genesys.sztaki.hu

2. Wallace Croft, David, “Intelligent Software Agents: Definitions and Applications”, 1997,
http://www.alumni.caltech.edu/~croft/research/agent/definition

3. The Inter-Agent Communication Model (ICM), Fujitsu Laboratories of America, Inc.,
http://www.nar.fujitsulabs.com/icm/about.html

4. Web Service Activity of W3C, http://www.w3.0rg/2002/ws/

5. DataPower Offering Web Services-Based Network Device Management,
http://www.ebizq.net/news/2534.html

6. HLA, Institute of Electrical and Electronic Engineers - IEEE 1516.1, IEEE 1516.2, IEEE
1516.3

7. GeneSyS project SourceForge file repository, http://www.sourceforge.net/projects/genesys-

mw

