8

OBJECT-ORIENTED DESIGN PATTERN
APPROACH TO SEAMLESS MODELING,
SIMULATION AND IMPLEMENTATION OF
DISTRIBUTED CONTROL SYSTEMS

Satoshi Kanai', Takeshi Kishinami', Toyoaki Tomura® Kiyoshi Uehiro’,
Kazuhiro Ibuka®, and Susumu Yamamoto®

! Dept. of Systems Engineeering, Hokkaido Univ., Japan
2 Asahikawa National Colledge of Technology, Japan

3 Motorola Japan Ltd., Japan

e-mail: kanai@coin.eng.hokudai.ac.jp

Abstract:  Distributed control systems (DCS) come into wide use in automation areas. In
this paper, an object-oriented design pattern approach for modeling, simulation
and implementation of the DCS is proposed. The proposed design patterns
enable the uniform modeling of the static structures and dynamic behaviors of
the DCS, the transformation of the models into simulation program, and the
generation of the embedded codes. The Java-based modeler and simulator, and
code generator were developed based on these patterns. Applications to the
building automation and factory automation systems proved its effectiveness.

Key words: object-oriented modeling, design pattern, distributed control system,
simulation, UML, LonWorks, FieldBus.

1. INTRODUCTION

Distributed Control Systems (DCSs) using open networks such as Fieldbus,
CAN and LonWorks, are rapidly replacing traditional centralized control
systems in a factory, process and building automation areas [1]. As shown in
Figure 1, the DCS generally consists of many devices and an open network
interconnecting them. A device consists of one control node and several device
components (sensors, actuators), while a composite device consists of a group of
devices. The DCS can make the system more scalable, and its building and



68 Knowledge and Skill Chains in Engineering and Manufacturing

wiring cost much less. On the other hand, the communication traffic among the
devices tends to concentrate on a network. This causes an unreliable control
performance. The system integrators have to test and avoid such situations after
building the DCS. However, these works are time-consuming and costly.

To solve the problem, the system integrators need the computer-aided tools
where they can simulate performances of the designed DCS, and can generate
the embedded control codes installed into devices. The systematic method is
needed to develop such tools. The method has to satisfy several requirements: 1)
static structures of various devices and device components can be modeled, 2)
dynamic behaviors in the devices and communication among the devices can be
modeled, 3) the models can be easily used in the executable simulation program,
and 4) the models can be automatically transformed to the embedded control
codes installed in each device.

The object-oriented methods have been used for modeling various
manufacturing systems. So far, SEMI/CIM-Framework[2], OSE[3],
SEMI/OBEM][4] and GEM]5] specified the reference models of manufacturing
resources described by UML or Coad&Yordon methods. However, their
modeling scopes do not fit to the above requirements of the DCS.

The purpose of this research is to propose an object-oriented and design
pattern—based method for seamless modeling, simulation and implementation of
the DCS. Five design patterns are newly proposed. The DCS modeler and
simulator, and the embedded code generator are also developed based on these
patterns. A case study for controlling material handling system proves the
effectiveness of our method and tools.

2. OVERVIEW OF PROPOSED DESIGN PATTERNS

Design pattern is a reusable structure for collaboration and interaction among
classes or objects applied to capturing problems in a general domain [6].
However, existing design patterns are too generalized to express the DCS
simulation models. Therefore, in this paper, five design patterns are proposed



Object-oriented Design Pattern Approach to Seamless Modeling, 69
Simulation and Implementation of Distributed Control Systems

specializing in modeling, simulating and implementing the DCS. Figure 2 shows

§ Rough Requiments from Customer
Requirements Analysis and Design

i
— Spaecifications of Actual {Kinds and Numhms of Communication Specifications
/Actuat among Sensors/Actuators

e

CS Modeler .
p Designing Event
ICommupnication amon:
SenscvslActuaxors

_ Classes of
Slé‘nso'r?/‘AElbalors

........ o S u.i ¥ ..@J Registering

Designing Concrete ] Designing Structure
. of Devices

evice Models i
and
Reusing Tham h

Pag'gcm

5 .
Designing Behaviors . Designing Structure of!
of Sensors/Actuators Composlle Devices

Compliance
Checking

1 Behavlor Specmcafff*fr? ﬁyﬁﬁmmmuatmsm’mﬂ&ﬁéb . Neiwor| Com_m\l‘zmlcalion
ralpprfies L(Te:s ofDevices

Kinds and Numbers of Devices DCS Simulator Param
F{:‘?} : Network Modal.(LogW orks, DeviceNet) 3‘»;

Figure 2. The design pattern-based modeling and s1mu1at1ng tools for the DCS

our modeling and simulating tools of the DCS and related design patterns.
Device-Constructor pattern describes the instantiation mechanisms for
structuring the device models composed of many kinds of sensors, actuators,
and local controllers. Composite-Device-Constructor pattern describes ones for
structuring the composite device models composed of many kinds of devices.
Statechart pattern defines the state-transition mechanism for realizing the
dynamic behavior of each device and its device components. Event-Chain
pattern defines the event dispatching mechanism among the sensors and
actuators inside the device and inter-device on the network. Statechart-compiler
pattern defines the mechanism for transforming the behavior of the DCS
simulation model to the low-level codes embedded in the device. The first four
patterns are designed for the DCS simulation, while the Statechart-compiler
pattern is for the implementation. The details are described in section 3 and 4.

3. DESIGN PATTERNS FOR MODELING AND
SIMULATION

3.1 Device and Composite Device Constructor Patterns

The Device-Constructor pattern and Composite-Device-Constructor pattern
are proposed to model the static structure of the DCS[7]. Figure 3 shows the
UML class diagram of the patterns. The Composite-Device-Constructor pattern



70 Knowledge and Skill Chains in Engineering and Manufacturing

Device 4 AEContainer 1 xor} <<interface>> <<Interface>>
- enl
+ clons() : Device - key : Key = null 1! EntryActionStrategy {3 GuardStrategy vard
+ createSensor(key : Key, n : int) | - nElement : int x 0 —— 7 - )
+ createActustor(key : Key, n : inf) 3+ clone() : AEContainer J-- + executeEntry(state : String) 1 + evaluateGuard( ’L
+ createControlier(key : Key, n : int) + addElement() sign : String,
] <<Interface>> para : Object) : boolean

:’_& DoActivityStrategy K-

]
|

'

Iy

y

[I <<Iinterface>>
H

h

y

y

Iy

e AN S8YICOM A ag 3 1
+ executeDo(state : String)
DeviceManager : ActlonStrategy ction
" <<interface>> | | |+ executeAction(sign :
[Device’s Compone ki ExitActionStrategy . | | || |_String, para: Object
o - 11 + executeExit(state : String) Kl f o S
<<interface>> Context b G“"’.
7 £ X -2 eventOccured(sign : String, [ <<interface>> |
o 25 = para : Object) : State 80 Actions #
¥ | Gerdotined 5\ swatecne
+ clone() ; Sensor ;| e StateMachine
U'p"'d'""‘d = = 1 dion 4 ExitActions |- current 4| + eventOccuredisign : String,
Classes ARFactory TR SN State para : Object) : State
State tie
. : aull Transition
N - - gensor U # name : String - h
35 -conirolierFactory : AEFactory = null i3 . . b
Creation Factory actory K] paens Toumg, | ¥es #nex eventSign : String
of Clones of : - actuator para : Object) : State 7] + evaluateGuard(
Sensor, Actuator, |y Factory L1} + executeEntry(sign : String) | ! dStat para : Object) : boolean |!
and Controller |+ addlkoy: Koy orolotyne : ActiveElamentl [~ somreer + jgn : String) {22510 + eventOccured(
Objects + clone(key : Key) : ActiveElement 1 Factory + executeExit(sign : String) 1 +| para: Object) : State
P b :
Figure 3. Device Constructor and Figure 4. Statechart Pattern

Composite-Device-Constructor Patterns

is a pattern that extends three classes (CompositeDevice, Device Container, and
Device Factory) of the Device Constructor pattern to the composite device. In
this pattern, AEContainer represents the container class for all of the objects of a
particular concrete class. AEFactory represents the factory class for creating the
cloned objects of the concrete classes. The object of the AEFactory class
contains the objects of each concrete class with a key string. ConcreteSensor,
Concrete Actuator, and Concrete Controller represent the concrete classes of the
three abstract classes Sensor, Actuator and Controller.

The features of this pattern are as follows. Firstly, a particular kind of device
component can be modelled as a concrete subclass, so that we can directly
represent the system structure that various types of sensors, actuators are
connected to the control node. Secondly, the connection of a control node with
its constituent device components can be expressed explicitly. Thirdly, various
types of devices can be flexibly modelled only by changing the kind or the
number of device components in the predefined device models. These features
are similar to the ones of the Composite Device-Constructor pattern.

3.2 Statechart Pattern

The dynamic behavior of each device component in the DCS can be
specified as the Statechart. The Statechart provides finite state machines with the
notions of sub-states, entry and exit actions, do-activities and guards [8]. To
accurately model these notions of the Statechart and realize the executable Java
code, the Statechart patterns are newly proposed.



Object-oriented Design Pattern Approach to Seamless Modeling, 71
Simulation and Implementation of Distributed Control Systems

Figure 4 shows the class diagram of the Statechart pattern. Context has the
dynamic behavior described by the Statechart. StateMachine describes a finite
state machine composed of sets of states and transitions. State corresponds to
either the state itself or its sub state machine. EntryActions, DoActivities, and
ExitActions describe the actions and the activities in a state as interfaces. Guards
and Actions represent guards and actions of a transition as interfaces.
EntryActionStrategy, DoActivityStrategy, and ExitAction Strategy represent the
concrete implementation methods to execute actions and activities.
GuardStrategy and ActionStrategy also represent the ones to evaluate transition
conditions and to execute actions according to occurred events.

In the proposed Statechart pattern, the one-to-one simple mapping from the
design pattern to the Java code can be explicitly defined. Moreover, because the
general structure of the Statechart itself and the implementation of actions,
activities and transitions depending on the context can be completely separated
in the pattern. So the system designer can easily identify and modify the
methods of actions, activities and guards only in the Context’s class

33 Event-chain Pattern

To complete event-driven DCS simulation models, the event links between
device components transmitted both at the inter-device and intra-device levels
have to be modeled and dispatched as shown in Figure 5. For modeling these
event links, we propose the Event-chain Pattern.

Figure 6 shows the class diagram of an Event-Chain pattern newly proposed.
IOVariable represents the class of input/output variables of the device
components, device, and composite device. Any subclass of the IOVariable
class can be defined freely according to the specification of network. Link
represents the class of links between the input and output variables, including
peer-to-peer, multicast, and broadcast communications. EventDispatcher

T hbstaeiel
‘according to|

String
- destinations | + setName(newiName: String) |-

Figure 5. Event links and dispatchers Figure 6. Event-chain Pattern



72 Knowledge and Skill Chains in Engineering and Manufacturing

represents the class of event dispatchers that determine the destination of the
generated events of the device.

In the Event-Chain pattern, the Device and CompositeDevice objects only
have to relate to a uniform EventDispatcher, and they do not have to care if the
event is going into or out from the device. The existing Device and
CompositeDevice objects including pre-defined links are also reusable in the
modelling of other CompositeDevice objects. The change of IOVariable objects’
value is interpreted as an event or an action in the Statechart pattern of concrete
device classes. Using the procedure, the DCS simulation model can
automatically dispatch all the events among the suitable device components.

4. STATECHART-COMPILER PATTERN

The behavior of the control code executed in the device can be modeled as
Statechart, but in case of LonWorks-based DCS, the code is eventually
implemented as Neuron C. The Neuron C [9] is a subset of ANSI C, so that the
Statechart behavior must be implemented without “class” concept. The
Statechart-compiler pattern is proposed to bridge this gap. This design pattern
can transform the device behavior modeled as Statechart to the Neuron-C code.

Figure 7 shows the process to apply the Statechart-Complier pattern. Firstly,
the Statechart is converted to the textual formal description whose syntax is
specified by the extended BNF[10]. Secondly, the formal description is parsed
to obtain a syntax tree. Each node of the tree corresponds to the object defined in

State transition Object description of | Formal description ot H Syntax tree of Executable
specification of device hart & t-chain: state transition spec. § formal description Neuron C code
StateMachine device = StateMachine m1 H N fe e
Dawoe n:v SluleM;chIne('mI'); State s|° e 2 State rgachine fist when(reset) {
State s2 i Y it initiaizeStateMachines();

‘nen(nv_update_occurs(nvi)) {

‘avice.createState("s1"), 2 Transition from s1 tos2{ "

vice.createState("s2"); Event Message msg 3
. “ H(eventOccurred(m1, e1)) { ...}
)

Sensor || Actuator _ : 52, ;
-@) 5devlce createTransition("s2", *s1%); 3 }
g ................

evice.createTransition("s1”, “s2°);
Figure 7. The process of control code 1mplementatxon using Statechart-Compller pattern

Table 1. A mapping rule from Statechart-

StateNode StateMachine Main [ Tokens P
e S ListNode |~ ooy | omrokend: S Compiler pattern to Neuron C
| + parse(t: Tokens) || +

+ parsel: Tokens) | g - /| + createCode() 1/]\ - tokens

T RTEEEs T b 1 Event and Action Neuron C code

RSy T © moa-w(iorms)muq(“

if(eventOccurred(&macting, 8evert)

ppv— et (BT OETEN  Fekai )
o

when{rv_update_ ocours(Tessage nams) {
Bert Hf(message name==ST_ON) {

I0ActionNode m— Fromdiferert dvice|  {event Cocurred &recting Severt) {
- ioName: String | ventNode Messacel (Satd evert dhar) P tts ection(s) ¥ }
- ioValue: Integer ~| - loName: String eert }
loValue: Integer }
+ parse(l: Tokens) P litoaanaiminaiiiniiail fm————— ] ke e e e e e
parse(t: Tokens) # 10 y & ){
MessageActionNode P Framsame device
| MessageEventNode Fisadtion(s) ¥}
- objectName: String
. String String o lo_out{io_rams, vaiue);
+ parse(t: Tokens) } | + parse(t: Tokens) adtion - i

Figure 8. Statechart-Compiler pattern @ [ Tosamedaice | iseguliomesg




Object-oriented Design Pattern Approach to Seamless Modeling, 73
Simulation and Implementation of Distributed Control Systems

the Statechart-complier pattern. Finally, the Neuron C code can be automatically
generated by the mapping rules from objects of the syntax tree to the Neuron C
statements. Table 1 is a part of these rules.

Figure 8 shows a class diagram of the Statechart-Compiler pattern. Main
executes a method of generating Neuron C code after reading the formal
description. A StateMachineNode represents one state machine described in the
formal description. A StateNode represents a state in the statechart, and
TransitionNode does a inter-state transition. EventNode and ActionNode
represent an event or an action defined in the transition. IJOEventNode represents
an incoming I/O signal event from a sensor or an actuator, while IOActionNode
represents an outgoing signal event to them. MessageEventNode and
MessageActionNode represent message events received from or sent to other
state machines.

The syntax tree does not depend on any programming language. Therefore,
this pattern is applicable to implementing the control codes by the languages
besides Neuron C. The control code of the other language can be built by re-
defining the language-specific mapping rules from the syntax tree to the
statements of that language. The automatic generation of the embedded control
code for DCS can be realized by this systematic procedure.

S. A CASE STUDY OF DCS DEVELOPMENT

We have implemented the Java-based DCS modeler and simulator software,
and Neuron-C code generator based on our patterns and procedures. In the
simulator, a designer can predict network traffic and a packet log shown in
Figure 9. By applying our design patterns, the modeler and simulator
development could be completed only for two months. These simulation tools
were introduced to several system integrators of building automation, and their
effectiveness on the DCS development has been verified[7].

AT
. Se;zuenco of Motlons§

1. Operator pushes the button.
2. VSLIDER goes down.

3. GRIPPER grasps the workplece.
4, VSLIDER goes up.

5. HSLIDER moves forward.

6. VSLIDER goes down.
7. GRIPPER releases the workplece.
8,

., VSLIDER goes up.
9. HSLIDER moves backward,

P

Figure 9. A screenshot of DCS simulator Figure 10. The DCS for pick & place unit



74 Knowledge and Skill Chains in Engineering and Manufacturing

Moreover, as an application to the factory automation, we consider the DCS
for controlling a pick-and-place unit driven by the pneumatic circuit. Figure 10
shows the structure of the DCS and the motion sequence of the unit. The DCS
consists of LonWorks and four devices each of which consists of one control
node, buttons, limit switches and valve actuators. Firstly, the task motions are
described as a sequence diagram. Secondly, the Statechart of an object’s
behavior participating in a sequence diagram were identified. They were used
with the Statechart and Event-Chain patterns. Using a Statechart-compiler
pattern, four executable Neuron C codes have been generated and were installed
into each of the four control nodes. As a result of the process, the motion
sequence of the actual pick & place unit could be correctly worked by the DCS
whose code was implemented from the simulation model.

6. CONCLUTIONS

In this paper, we proposed five object-oriented design patterns specializing
in seamless modeling, simulation and implementation of the DCS. The DCS
modeler, simulator, and embedded code generator could be -efficiently
developed based on the patterns. The result of using the modeler and simulator
in system integrators, and the one of building the DCS for the material handling
system controlled LonWorks proved the effectiveness of our approach.

REFERENCES

1. Dietrich, D., Neumann, P., and Schweinzer, H. (1999), Fieldbus Technology — Systems
Integration, Networking, and Engineering, Springer-Verlag.

2. SEMATECH (1995), CIM Application Framework, Specification 1.2, 6.

3. OSE (1996), OSEC Architecture Version 2.0.

4. SEMI (1998): SEMI E98-0302 Provisional Standard for the Object-based Equipment
Model (OBEM), SEMI.

5. SEMI(1998) : SEMI E30-0298 Generic Model for Communications and Control of SEMI
Equipment (GEM), SEMI.

6. E. Gamma, R. Helm, R. Johnson, and J. Vlissides (1995), Design Patterns: Elements of
Reusable Object-Oriented Software, Addison-Wesley.

7. Tomura, T., Kanai, S., Kishinami, T., Uehiro, K., and Yamamoto,S. (2001), Developing
Simulation Models of Open Distributed Control System by Using Object-Oriented
Structual and Behavioral Patterns”, Proceedings of Fourth IEEE Int. Symp.Object-oriented
Real-time Distributed Compiting, 428-437.

8. OMG (1999), Unified Modeling Language Specification Version 1.3.

9. Loy, D., Dietrich, D., and Schweinzer, H. (2001), Open Control Networks: —Lon
Works/EIA 709 Technology, Kluwer Academic Publishers.

10. Aho, A. V., Sethi, R., and Ullman, J. D. (1985), Compilers: Principles, Techniques, and
Tools, Addison Wesley.



