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This paper presents a model for preference-based multi-agent scheduling
suitable for Holonic Manufacturing Systems in which holons can cooperate in
producing a satisfactory global schedule. The goodness of the scheduling
model has been verified by a theoretical behaviour model and confirmed by
simulation, using a number of Assembler holons as the scheduler agents of
manufacturing tasks. The result of this study, which we found to be
satisfactory, has been presented in the paper.

1. INTRODUCTION

In Holonic Manufacturing Systems (HMS) holons (interpreted here as agents)
cooperate together to manufacture products. We may assume a coordinator holon
has a global task (joint task) to create a product with the help of a set of Assembler
holons as cohorts, each cohort scheduling its local component of the global task in
an environment where some of the scheduling slots (e.g. time-slots) of each cohort
will have been already occupied by previously allocated tasks from other
coordinators. From the perspective of the coordinators, the ideal situation is when all
the required Assemblers are idle, so that the waiting time in between the Assemblers
can be reduced to zero, while from the perspective of an Assembler there should not
have any idle time at all, so that it does not lose say financially. Thus contentions are
inevitable, there is no global optimum, only negotiated compromises.

Recognising this reality, we have developed a model based on user-defined
preferences, which are expressed on resources used in task scheduling, such as
machines, time or labour. It is not possible to meet all the preferences due to
contention, and therefore we can define the best solution as the solution that meets
as many preferences as theoretically possible, while satisfying all the constraints.
However, since a the theoretical best is not really practicable, we opt for a good
solution that lies within the upper and lower bounds of theoretical predictions.

In this paper we address the problem of how to derive a preference-based
solution in presence of contention, where awarding preferences to the solution of
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one task can only be done by depriving/removing preferences from that of another.
Deprivation and particularly removal of preferences creates a high non-linearity
leading to non-convergence. We propose a general model that produces a good
solution in finite time (section 2), backed by a theoretical performance model
(section 3) and a simulation study that verifies the correctness of the theoretical
model (section 4). This work extends that published in [2].

Preferences are being used in many applications including document ordering,
learning and s torage in an W eb-based e nvironment [1], electronic commerce [4],
product design [5], agent-based routing [6], distributed meeting scheduling [7, 10],
advanced information retrieval [8], fuzzy ranking [11] and cooperative decision-
making [12]. Preferences are used in most of these papers as a simple ranking
system, and most of the applications occasionally require human intervention at
some point. Also most applications do not guarantee the convergence of-distributed
computation. None of these papers mentions explicitly the cascading effect or a
mechanism for dealing with rescheduling. Numerous researchers use agent
technology to resolve the manufacturing scheduling problem. Shen and Norrie [9]
give an overview of recent projects, and how they deal with the scheduling.

Our multi-agent approach is based on what we call Cooperating Knowledge-
Based Systems (CKBS), in which holons cooperate together in solving a global task
through a Cooperation Block (CB) where one holon acts as the coordinator and the
others as cohorts. This is an engineering paradigm as opposed to the mentallistic
paradigm of distributed AI/Multi-agent systems (DAI/MAS) [3], but it blends ideas
from both distributed databases and DAI/MAS.

2. THE SCHEDULING MODEL

We assume a (global) task T, subdivided to lower-level tasks, to be referred to as
subtasks (T; ... Ty), each subtask T; having preferences on the resources (strictly
speaking resource instances) used for their scheduling. Dependencies among
subtasks, including precedents constraints can lead to a heterarchical structure. The
task T is executed by the coordination, while each subtask T; is allocated to an agent
(Assembler) A;. It is often impossible to satisfy all the preferences due the following
reasons: (i) contention with the preferences of other agents, (ii) processing cost and
(iii) intractability leading to non-convergence.

We assume each subtask to specify preference values on the resources required
for the allocation of each subtask. A coordinator can specify very high preference
values for its subtasks greedily. To control this greed, we use a market based cost
model. The coordinator must state how much it is prepared to pay to achieve its
preference. A task then is expressed as follows:

T: [(Gi...Gm), (P1...Pa), (V1... Va) (O1... On)]
where (G ... Gy, ) are the set of the task constraints, typically task dependencies, (P,
.. Py) are a set of (preferred) resource instances, such as end-times, (V, .V, ) are
the corresponding preference values on these resource instances, and (O, . O, ) are
the corresponding offer prices — the prices the coordinator is prepared to pay to get
these preferred resource instances. In other words, the coordinator is prepared to pay
price O; for resource (instance) P; with preference value V. The offer price has to be
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checked against the actual cost (cost price) of the requested allocation as discussed
below.

Associated with the allocation of each task T; is a cost Ct, which is meant to be
covered by the offer price. The cost Cr is used to terminate a branch if the agreed
cost is exceeded. Each coordinator can accumulate the payments it has received
from other coordinators, and use this to buy preference values in the future. Cy can
be less than the offer price, depending on the negotiation but no offer is accepted if
it is less than Cr. Cost Cr has two components: initial (or basic) cost Cj, and a
refinement cost Cr. Component C; is the cost of finding an allocation for the task
ignoring its preferences (on resources). Such an allocation might fortuitously satisfy
some or even all preferences. If not, then further processing (called refinement on
allocation) over many iterations may be needed to gain more preference values. In
any iteration, this task may be reallocated to a preferred resource instance, removing
another task from that resource instance. potentially recursively. This cost Cy is the
estimated relocation cost of those dislocated tasks, and can be a cascaded cost due to
task dependencies. It is expressed as follows:

=m
C,=C,+).C,

i=1
where m is the number of refinement needed to find a solution. The basic algorithm
is outlined in the following pseudo code, in which an initial total preference value V;,
is obtained at first, which is subsequently improved by refinement iterations. At each
iteration, multiple candidate allocations are evaluated, from which the one that
provides the maximum preference value, say V,,, is selected within the allowed cost
(i.e Or< Cr). However, this improvement is accepted only if (V,, — V,) > ® where @
is a preference cut-off value (see section 4). If this improvement is accepted, then
Vm becomes the new V,, and a new iteration begins. But if this gain does not exceed
@, the execution is terminated. In practice, iterations are continued for several more
times b efore termination. T he actual process is more elaborate as can be gleamed
from section 4.

For each coordinator agent:
Get an initial solution, say total preference value V,
If (initial solution satisfies all the preference values)
Accept the solution
else{
Begin an iteration to maximise the preference values
Seek new allocation by negotiating with other tasks.
Find the new preference values and costs of all possible new solutions.
Select from these solutions the one with Vy, for (O;< Cy)
If (Vu-V)20,
Accept this solution, and set Vtto Vm
Proceed to the next iteration.
else
Accept the earlier value of V, and Terminate
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3. THEORETICAL DISTRIBUTION MODEL

Because the scheduling model described above is highly nonlinear, verification
using the available mathematical techniques is difficult, as we cannot relate the
arbitrary user values, such as the preference values, cost values and preference cut-
off values, e ffectively by a mathematical formula However, we have been able to
produce a behavioural model by examining the iterative allocation process and the
associated incremental preference gain, as presented below. After each iteration I,
the total remaining preference value that is yet to be satisfied is given by R;. During
the allocation process, described in section 2, the final global preference gain, G,
gradually decreases per iteration as the iteration number I increases, eventually
converging onto a minimal value for the total remaining preference value not
achieved. We can express R; for iteration I in an exponential form as:
R;=A +Be™
where the constant A is the height of the plateau when e~ tends to zero. Hence A
= Ry, Which is the remaining minimum preference value at ¢ ~* = 0, to be
referred to as the residue R;,. Constant B is Ry, which is equal to (R; — Ryyy,), and
constant A gives the curvature of the distribution related to the rate of preference
gain. Thus the equation can be written as follows:
RI = Rmin + Rmaxe-}‘I

The initial allocation is made ignoring preferences. This is the zeroth iteration (I
=0) when Ry=Ry;, + Ruux- At the nextiteration(I=1), Ry = Ry + Rumx € M
As Iincreases, e M — 0and R;{— Ry .

Our extensive investigation to determine the factors that affect the value shows
(not presented here) that predominant factor is the clustering of preferences on
resource instances. For example if only one subtask can be allocated to a time-slot
say 11 am on a machine. but three subtasks jostle for it, then only one of these can
be satisfied even in theory, the other two contributing to preference losses.. We have
have captured the clustering effect in our theoretical estimation of R;. In our
formulation, we use two parameters, the distribution density d, and the Preference
Reduction Function p, as explained below for preferences on a single resource type,
which can be imagined as the end-times for subtasks. If we have t subtasks, all
having preferences over the same m (<t) resource instances (eg end-time slots), then
the density d = t/m. This is the effect of clustering, which can only be resolved by
allocating some of these t subtasks away from m, but still as close to their preferred
resource instance as possible, so that the preference loss is minimised. The function
p is used to determine this preference loss.

Given a subtask, we may assume that its preferred resource instances are placed
in a convenient preference-value order. Thus, if the end times are the resources, then
the time-slots are the resource instances, which would be in time order. Hence, if a
preference value V has been attached to the instance k and if p is the percentage
decrease for each slot away from k on either sides of k, then V will change to V (1 -
jp) for both the instances (k-j) and (k+j)). For example if a preference V is expressed
for the hourly slot 10 am, then it will be V(1 - p) for both 9 am and 11 am slots.
Note (1 -jp)=0ifjp>1.

We assume we have t=2h subtasks with preference over m=2n resource
instances, where t > n (see Figure 1). Each resource instance as a time-slot,
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preference values decreases on either sides of the most preferred time-slot, this
decrease is given by p, as discussed above. In order to find the preference loss
formula we need to evaluate the average movement from slot 1 at the right side of
the midpoint m; for the right half slots and hence half the subtasks (t/2).

i
iMid Point m,

Tasks
M

'g‘ 5 B 13 it ._;1 Ere

Resource nslances

Figure 1- Preference Distribution

In Figure 1 above, more than three subtasks have been given for each slot in the
central region, which must be declustered with one subtask per slot (indicated by the
lower horizontal line above the X-axis). To do this we move subtasks away from the
midpoint, we evaluate the shifts and then calculate the total preference loss, which
will give us Ry

The first d subtasks at slot 1 moves to slots 1,2,3,...d, with displacements [0, 1,
2, .., d-1], then the displaced d subtasks moves to slots d+1, d+2, .. 2d, with
displacements [d-1, d, d+1, .. 2(d-1)], then the displaced d subtasks moves to slots
2d+1, 2d+2, .. 3d, with displacements [2(d-1), .. 3(d-1)], and so on. Generally
speaking the displaced d subtasks moves to

slots (n-1)d+1, (n-1)d+2, .. nd, with displacements
[(n-1)(d-1), (n-1)d, (n-1)(d+1), .. n(d-1)].
The summation of the displacement of each sets of d subtasks:
[0,1,2,..,d-11=(d-1)d2
[d-1, d, d+1, .. 2(d-1)] = [(d-1)+2(d-1)]d/2= 3(d-1)d/2
[2(d-1), .. 3(d-1)] = [2(d-1)+3(d-1)]d/2= 5(d-1)d/2

[(n-1)(d-1), .. n(d-1)] = [(n-1)(d-1)+n(d-1)]d/2= (2n-1)(d-1)d/2
If we sum the right hand side we get
(1+3+5+7+.....+(2n-1))(d-1)d/2
= [1+ 2n-1](1v/2)(d-1)d/2 = nn(d-1)d/2

This also applies for the subtasks on the left half, hence the total displacement for
the whole distributionis n n(d-1)d. To get the a verage movement p er s ubtask we
divide by t = 2nd, the average movement per subtask becomes:
nn(d-1)d/(2nd) = n(d-1)/2
If the preference loss per unit shift is p, then the preference loss per subtask is:
pn (d-1)/2 Eqn 1 (Preference Loss Formulae)
Upper and Lower Bounds of Preference Loss
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First assume that the subtasks do not have any precedent constraints and hence can
be allocated freely. In that case we can e valuate an weighted average of the total
preference loss as follows:

[ Pl*Ll + Pz*Lz +... Pq*Lq]/q

where L; is the preference loss (in percentage) of Assembler A; (calculated from the
preference loss formula given above), and then P; is the total preference of A;. This
is the minimal loss based on density d; in each Assembler A; and hence is the
predicted lowest limit of R ;.

Assume that the t subtasks were distributed over s resource instances in iteration
0 due dependencies (including precedent constraints), where s > t. Therefore, each
subtask will occupy on average s/t ( = 1) slots rather than t/t (= 1) slot. In that case
the density d; = t/m will change into a revised density D; = s/m for Assembler A;. Its
effect is the same as replacing d by D in Eqn 1, which will then yield a revised
estimate of the preference loss that includes the effect of dependencies. This will
give the upper limit of R,;,. Therefore our simulation should yield a value for Ry,
that lies between these two limits.

4. SIMULATION STUDY

In this section we aim to present the results o btained from a simulation s tudy for
scheduling in a distributed manufacturing environment using the algorithm
described earlier in section 2. We have implemented the scheduling model in a
demonstrator using a Java platform.

For the simulation study we have used a set of coordinators CAj, CA,, .. CA,,
each CA; with a (global) task T;, each task T;being further subdivided into subtasks:
Ty | {j=1,2,.. m}, one or more subtasks being allocated to a target agent (say an
Assembler holon) Ay. In our implementation we have used up to n = 14, that is, up
to 14 coordinators, up to six subtasks (m= 6) in each task and three target agents,
each target agent sharing many subtasks of different coordinators. The subtasks have
precedent subtasks and their allocation to the target agents can be conjectured as the
allocation to Assembler agents in manufacturing. The preferred resource type used
in our simulation is end-time slot of a subtask. Each subtask T; has a preference
value V; and an offer price O; that the task is willing to pay for preference
satisfaction. Also the costs C;and C,, are set by the c oordinator, and indicate the
price that the task should pay for a preferred allocation (see section 2). Our objective
is to find a schedule that satisfies as much preferences as possible using our
proposed scheduling model.

According to our algorithm initially each subtask is allocated the earliest possible
slot that satisfies precedence constraints. In the following iterations the coordinator
will accept a negotiation for an exchange if its offer price O > the cost C for the
expected preference gain g. After negotiations, an actual exchange with preference
gain g', where g > g’ is proposed. Note g'is (V, — Vy), in the algorithm in section 2.
However we use a special preference cut-off value ® such that if an iteration does
not improve the preference gained by at least this @, then this gain is rejected, in
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order to prevent too many insignificant gains and iterations. Thus the coordinator
will accept it if g’ > @, but pay pro-rata to C*g/g. If the exchange is unsuccessful,
the negotiation will continue for another possible exchange. If no improvement on
preferences can be made, allocation is made according to the previous allocation. In
our implementation the preference values and offer prices are assigned randomly
using the random method available in Java Math package. We have conducted
several hundreds of experiments with many permutations and combinations in order
to verify the basic properties of our model and to verify the mathematical model
described in section 3.

4.1 Verification of Basic Properties

In order to show that the solution converges to the same final value independent of
the initial order of subtask processing, we carried out an experiment with 24
subtasks of all mixes but with non-conflicting end times slots (preferred resource). If
these subtasks are allocated in the arrival order (which was the end time order) over
three target agents without paying any attention to their preferences, 100%
preference values will be automatically achieved. We then allocated these tasks in
the reverse order without taking any preference into account. This yielded 30%
preference gain. On this distribution we applied our model and re-allocated the
subtasks, this time (iteration 1) taking preferences into account. This first iteration
achieved 100% gain. We repeated this experiment with different initial order, and
each case 100% gain was achieved at the first iteration. In these experiments the
value of preference cut-off ® was kept fixed at 5%.

These experiments confirmed that our model behaves, as we expected, and that it
does lead to convergence. 4 significant point is that this model produces results
which are independent of initial allocations (i.e the order of subtask processing), so
difficult to achieve in machine scheduling.

In the next set of experiments we investigated if higher offer prices by some
coordinators can distort the results significantly. We have used six coordinators,
each task T; of the coordinator CA; having m number of subtasks, m varying from 3
to 6. Initially all subtasks are allocated on the first available (time) slots in the
(global) task order Ty, T, ..., Tg, at a given offer price, but without considering the

Preference Satisfaction%

——T1
oo T 2
—a—T3
p——)
e T
—e—T6

o - — ——

1.2 3 4 5 6 7 8 9 101112 13 14_15 76 17 18 19 20 21 22 23
lterations —‘

Figure 2 - Preference satisfaction of tasks
preferences. Then a series of iterations was carried out with the same ®© value of 5%.
At each iteration, the offer price of one of the coordinators was raised by 5% and its
subtasks reallocated, taking only its preferences into consideration.



180 EMERGING SOLUTIONS FOR FUTURE MANUFACTURING SYSTEMS

The results presented in Figure 3 which shows the changes in the preferences
satisfied during the allocation of each task (T}, T, ..., T ) in which only preferences
of that task was taken into account. So our conclusion is that higher offer prices do
not make any significant change, and therefore our model produces stable preference
gain. Next we have examined if the preference gain and the cost of one task is
affected by increasing offer prices of the other coordinators. We have conducted this
experiment for each task T;, but selected arbitrarily to show it for T; in Figure 3,
which was typical for all other tasks.

T3 Pref. Sat. & Cost

1 3 5 7 9 11 13 15 17 19 21 23
Reallocation Trials —»

Figure 3 - T preference satisfaction offer & cost variation

We can observe from Figure 3 that the preference gain and cost for T;, against
the accumulated offer prices of the other coordinators. Evidently the increase in their
offer prices did not affect the preference gain of T; in any significant way. This
result is typical of all Tj's.

4.2 Verification of Our Model

These second sets of experiments were carried out to verify that the preference gain
over iterations obeys the theoretical model. These results are presented below for
two categories:

Observance of the exponential rule at a variable ® value

Observance of the upper and lower bounds

4.2.1 Variable @ Value.

In this study we used 14 tasks (coordinators) and 54 subtasks distributed over 3
target agents, and carried out three experiments for different @ (2%, 5%, 10%), the
same set of preference values, and the same preferred end-time slots of each subtask.
As shown in Figure 4, the fits on the results of the iterations for preference gain
confirm the exponential pattern predicted by the theory.
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Figure 4 - T; preference satisfaction offer & cost variation
4.2.2 Boundaries

The objective of this experiment is to compare the predicted results from the
theoretical model with the obtained results from the implementation. In this
experiment we used the results from the previous experiments as well as new cases.
In some experiments we changed the value of the preference loss rate (explained in
the previous section). We used different number of tasks with different number of
coordinators, 12, 24, 29, 54 tasks and 4, 6, 7 and 14 coordinators, respectively. For
the purpose of this paper we show a summery of part of the is shown in Table 1.

Table 1 - Results Summary

Number | Pref. Loss Calculated Results Experimental
Case | Of Tasks Rate Minimum Maximum Results
1 12 5 49 11.6 8.5
2 12 10 9.8 233 16.7
3 28 5 9.3 27.5 22.8
4 54 5 29.2 58.6 50.8
5 54 5 18.9 28 25.6

Clearly the experimental results on preference loss lie within the upper and the
lower bounds of the theoretical predictions.

5. CONCLUSION

In this paper we have presented a cooperative scheduling approach based on user-
defined preferences that can be applied in HMS applications. In this context, we
have described a distributed allocation technique and a theoretical model to assess
its correctness, which we have verified by conducting a simulation study. We have
used a cost-based negotiation approach to ensure that the system can converge to a
good solution within the upper and lower bounds of our theoretical prediction. The
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allocation is independent of initial allocation, it converges, and furthermore the
convergence can be achieved faster for crude allocation, should it be desired. We see
the potential of applying this approach in HMS and other agent-based cooperative
scheduling applications, including distributed project managements. Finally
although not part of the HMS project, this work is a spin-off from it. We are
indebted to our HMS partners for the various ideas and discussions from which this
work has indirectly benefited.
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