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Abstract. Theories of embodied cognition and active vision suggest that 
perception is constructed through interaction and becomes meaningful because 
it is grounded in the agent's activity. We developed a model to illustrate and 
implement these views. Following its intrinsic motivation, the agent 
autonomously learns to coordinate its motor actions with the information 
received from its sensory system. Besides illustrating theories of active vision, 
this model suggests new ways to implement vision and intrinsic motivation in 
artificial systems. Specifically, we coupled an intrinsically motivated schema 
mechanism with a visual system. To connect vision with sequences, we made 
the visual system react to movements in the visual field rather than merely 
transmitting static patterns.  
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1   Introduction 

We address the question of how autonomous agents can learn sensorimotor 
contingencies—contingencies between the agent’s motor actions and the signal 
received through the sensors. We propose a model that learns such contingencies in 
rudimentary settings. The agent has primitive possibilities of interaction in a two-
dimensional grid, and distal sensors that reflect some remote properties of the grid. 
The learning process is driven by intrinsic motivations hard coded in the agent, and 
results in the agent gradually improving its capacity to exploit distal sensory 
information to orient itself towards targets within the environment. 

The idea that visual perception is actively constructed through interaction was 
proposed by theories of active vision [e.g., 1]. Specifically, O'Regan and Noë [2] 
proposed the sensorimotor hypothesis of vision. They used the metaphor of a 
submarine controlled from the surface by engineers, but with connections that have 
been mixed up by some villainous marine monster. They argue that the engineers 
would have to learn the contingencies between the commands they send and the 



signals they receive. O'Regan and Noë’s sensorimotor hypothesis of perception posits 
that making sense of perception precisely consists of knowing these contingencies.  

To implement these views, we rely on our previous work regarding intrinsically-
motivated hierarchical sequence learning [3]. In this previous work, we implemented 
an original algorithm that learned regularities of interaction. This algorithm was 
inspired both by constructivist schema mechanisms (e.g. [4, 5]) and by principles of 
intrinsic motivation [6, 7]. The algorithm implements an innovative way to associate 
these two notions by incorporating intrinsic motivation into the schema mechanism, 
with schemas representing hierarchical sequences of interaction. Intrinsic motivation 
makes it possible to address the scalability issues of traditional schema mechanisms 
by driving the selection of schemas. 

We demonstrated that an agent could use this algorithm to learn sequential 
contingencies between touch interactions and move interactions to avoid bumping into 
obstacles. In this paper, we report an extension to this algorithm that allows the agent 
to learn contingencies when perception is not a direct feedback from motion. For 
example, unlike touch in our previous agent, vision does not directly result from 
motion. Yet, because our previous algorithm succeeded in learning “touch/motor” 
contingencies, we expect it to prove useful for learning “visio/motor” less direct 
contingencies. Specifically, we envision coupling the algorithm with a 
complementary sensory mechanism as suggested by theories of dual process [e.g., 8].  

More broadly, this work seeks to model and simulate ab-nihilo autonomous 
learning, sometimes referred to as bootstrapping cognition [9]. We relate this 
developmental approach to Piaget’s [10] notion of an early stage in human’s 
ontological development (pre-symbolic). For this work, though, this early-stage 
notion can also fit within the framework of phylogenetic evolution of animal 
cognition, as discussed for example by Sun [11].  

2   The Model 

 
In this model, the agent has six primitive behaviors. Each primitive behavior 

consists of the association of primitive actuators with binary feedback. These six 
primitive interaction patterns are listed in the first six lines of Table 1. Similar to our 

Table 1. Primitive actuators and sensors. 

Symbols Actuators Sensors Description Intrinsic 
satisfaction 

^    (^) Turn left True Turn 90° left toward adjacent empty square 0    (indifferent) 
      [^]  False Turn 90° left toward adjacent wall -5   (dislike) 
>    (>) Forward True Move forward 0     (indifferent) 
      [>]  False Bump wall -8   (dislike) 
v    (v) Turn right True Turn 90° right toward adjacent empty square 0     (indifferent) 
      [v]  False Turn 90° right toward adjacent wall -5    (dislike) 
       *  Appear Target appears in distal sensor field 15   (love) 
       +  Closer Target approaches in distal sensor field 10   (enjoy) 
       x  Reached Target reached according to distal sensor 15   (love) 
       o   Disappear Target disappears from distal sensor field -15  (hate) 

 



previous work [3], the binary feedback corresponds to a proximal sense that can be 
thought of as touch. If the agent tries to move forward, he can either succeed and 
touch no wall, or fail and bump into a wall. Succeeding in moving forward is 
associated with the intrinsic satisfaction of 0 (indifference) while bumping is 
associated with -5 (dislike). When the agent turns, he receives tactile information 
about the adjacent square that he turned towards; touched a wall (-8, dislike), or not 
touched (0, indifferent). 

In addition, we have now implemented the rudimentary distal sensory system 
depicted in Figure 1a. This system consists of two eyes that detect the blue color in 
the environment (target in Figure 1a). Each eye has a visual field that covers 90° of 
the agent’s surrounding environment. The two visual fields overlap in the line straight 
in front of the agent, including the agent’s location. Each eye generates a single 
integer value that indicates the amount of blue color detected, also reflecting the 
distance to a blue square if there is only one. This distal sensory system can thus be 
seen as a rudimentary monochromic visual system with a resolution of two pixels.    

We want the visual system to forward visual information to the agent’s situational 
representation in working memory to inform the selection of behavior. Inspired by the 
dual process argument, we first considered an iconic approach that would incorporate 
the two-pixel icon provided by the visual system as an element of context in our 
existing schemas. This approach proved inefficient because it added too many random 
combinations in the schema mechanism and the agent was unable to learn the 
contingency between the perceived icons and the actions. Moreover, the 
combinatorial growth would be prohibitive with wider icons. 

To better support contingency learning, we looked for inspiration from studies of 
biological primitive organisms. We found useful insights from the limulus (horseshoe 
crab), an archaic arthropod whose visual system has been extensively studied [12, 13]. 
Specifically, we retained the two following principles: 

1) Sensibility to movement: the signal sent to the brain does not reflect static shape 
recognition but rather reflects changes in the visual field. A horseshoe crab’s “eye is 
highly sensitive to images of crab-size objects moving within the animal’s visual 
range at about the speed of a horseshoe crab (15 cm/s)” [13, p. 172]. 

2) Visio-spatial behavioral proclivity: male horseshoe crabs move toward females 
when they see them with their compound eyes, whereas females move away from 

 
Figure 1. a) The agent’s vision of its environment (left). b) The diagonal strategy (top-
right). c) The tangential strategy (bottom-right). 

 



other females. 
Similar to our agent, horseshoe crabs’ eyes are fixed to their body and have poor 

resolution (roughly 40*25 pixels).  
From these insights, we modeled the visual system so that it updated the schema 

mechanism only when a change occurred in the visual field. We identified four 
different signals that each eye would generate: appear, closer, reached, and 
disappear. Additionally, to generate a visio-spatial behavioral proclivity, the schema 
mechanism receives an additional intrinsic satisfaction associated with each of these 
signals. These four signals are listed with their satisfaction values in the last four lines 
of Table 1. For example, an eye sends the signal closer when the amount of blue color 
has increased in this eye’s visual field over the last interaction cycle, meaning the 
square has gotten closer (with this regard, our agent’s visual acuity is more than two 
pixels because the agent can detect the enlargement of the target’s span in the visual 
field).  We associate the closer signal with a positive inborn satisfaction value (10) to 
generate the proclivity to move toward blue squares. 

With these settings (as reported in Table 1), we expect our agent to learn to 
coordinate its actions with its perception and orient itself toward the blue square. We 
must note that nothing tells the agent a priori that moving would, in some contexts, 
get it closer, or that turning would shift the blue color in the visual field. These are the 
kind of contingencies that the agent will have to learn through experience. 

After an initial learning phase, we expect to see different behaviors emerge. One 
possible behavior is the diagonal strategy depicted in Figure 1b.  This behavior 
consists of alternatively moving forward and turning toward the blue square until the 
agent becomes aligned with the blue square. At this point, the agent will continue to 
move forward. 

Another possible behavior is the tangential strategy depicted in Figure 1c. The 
tangential strategy consists of approaching the blue square in a straight line. The trick 
with the tangential strategy is that the agent cannot accurately predict when he should 
turn toward the blue square before he passed it. The tangential strategy thus consists 
of moving on a straight line until the blue square disappears from the visual field, then 
returning one step backward, and then turning toward the blue square. 

Of course, such specific strategies have probably little to do with real horseshoe 
crabs. These strategies would only arise due to the coupling of our environment’s 
topological structure with our agent’s sensorimotor system, intrinsic motivations, and 
learning skills. 

4   The Experiment 

We use the vacuum environment implemented by Cohen [14] as an experimental test 
bed for our agent. Figure 1.a) shows the agent in this environment. Filled squares 
around the grid are walls that the agent will bump into if he tries to walk through 
them. The agent’s eyes are represented by quarter-circles that turn a blue color when 
they detect a blue square; the closer the blue square, the more vivid the eye’s color. 
When both eyes send a reached signal, this signal triggers an additional systematic 
eating behavior (with no additional satisfaction value) that makes the agent “eat” the 



blue square, resulting in the blue square disappearing. The observer can thus see the 
agent’s behavior as a quest for food. The observer can click on the grid to insert a new 
blue square when the agent has eaten the previous one. 

We provide online videos of different runs of the agent1. At the beginning, these 
videos show the agent acting frantically because it has not yet learned the contingency 
between its actions and its perceptions. The agent picks random behaviors when it has 
no knowledge of what to do in a specific context. It learns to categorize contexts in 
terms of possibilities of behavior, in parallel with learning interesting composite 
behaviors. After the initial pseudo random activity, the videos show the agent more 
often orienting itself toward the blue square. After eating one or two blue squares, the 
agent starts to stick to a specific strategy.  Our website shows example videos where 
the agent has learned the diagonal strategy2 and where it has learned the tangential 
strategy3.  The website also provides a detailed analysis of activity traces to discuss 
the learning process4. An interactive demonstration is also available5 where the visitor 
can interact with the agent by adding food on the grid (this online demonstration is 
based on a slightly different configuration than the experiment reported here; in 
particular, the agent is in a continuous world rather than a grid, but the underlying 
algorithm remains the same). 

Different runs show that the agent always learns a strategy within the first hundred 
steps, and that the most frequently found strategy is the diagonal strategy, with the 
settings defined in Table 1. The experiment therefore demonstrates that the agent 
always succeeds in learning sensorimotor contingencies.  

The learning performance varies with the initial settings and the environmental 
conditions during training. Our goal was not to optimize the learning performance but 
to qualitatively demonstrate the nature of this developmental learning mechanism. In 
particular, the agent does not encode strategies or task procedures defined by the 
programmer, but rather autonomously constructs a strategy, as opposed to traditional 
cognitive models [15]. Our model is also consistent with studies of horseshoe crabs 
that show male horseshoe crabs can orient themselves toward static females because 
their visual system reacts to female-like objects that appear to be moving (relatively to 
their own speed) in a uniform background (a sandy shallow ocean bottom or beach) 
[12]. 

7   Conclusion 

This work demonstrates a technique for implementing vision as an embodied process 
in an intrinsically motivated artificial agent. In this technique, the visual system does 
not send static images to the central system, but rather sends signals denoting change 
in the visual field. Notably, this technique allows the agent to see static objects, 
because changes in the visual field can result from the agent’s own movements. This 

                                                             
1 http://liris.cnrs.fr/ideal/ 
2 http://e-ernest.blogspot.com/2011/01/ernest-82-can-find-his-food.html 
3 http://e-ernest.blogspot.com/2011/01/tengential-strategy.html 
4 http://e-ernest.blogspot.com/2011/01/tangential-strategy-details.html 
5 http://liris.cnrs.fr/ideal/demo/ernest83/Seca.html 



work opens the way to more complex models where the eye’s resolution will be 
increased and where the agent will have the capacity to move its eyes independently 
from its body. Such developments inform our understanding of visual systems in 
natural organisms and suggest new techniques to implement vision in intrinsically 
motivated robots.  
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