
A Software Platform for Evolutionary
Computation with Pluggable Parallelism and

Quality Assurance

Pedro Evangelista1,2, Jorge Pinho1, Emanuel Gonçalves1, Paulo Maia1,2, João
Luis Sobral1, and Miguel Rocha1

1 Department of Informatics / CCTC - University of Minho
jls@di.uminho.pt mrocha@di.uminho.pt

2 IBB - Institute for Biotechnology and Bioengineering
Centre of Biological Engineering - University of Minho

Campus de Gualtar, 4710-057 Braga - PORTUGAL
ptiago@deb.uminho.pt paulo.maia@deb.uminho.pt

Abstract. This paper proposes the Java Evolutionary Computation Li-
brary (JECoLi), an adaptable, flexible, extensible and reliable software
framework implementing metaheuristic optimization algorithms, using
the Java programming language. JECoLi aims to offer a solution suited
for the integration of Evolutionary Computation (EC)-based approaches
in larger applications, and for the rapid and efficient benchmarking of
EC algorithms in specific problems. Its main contributions are (i) the im-
plementation of pluggable parallelization modules, independent from the
EC algorithms, allowing the programs to adapt to the available hardware
resources in a transparent way, without changing the base code; (ii) a
flexible platform for software quality assurance that allows creating tests
for the implemented features and for user-defined extensions. The library
is freely available as an open-source project.

Keywords: Evolutionary Computation, Open-source software, Parallel
Evolutionary Algorithms, Software Quality

1 Introduction

The field of EC has been rapidly growing in the last decades, addressing complex
optimization problems in many scientific and technological areas. Also, there has
been the proposal of several software platforms with varying sets of function-
alities, implemented in distinct programming languages and systems. Although
the authors acknowledge the existence of interesting platforms implementing EC
approaches, none of the ones tested was able to simultaneously respond to the
set of requirements underlying our needs, namely: (i) robustness, modularity and
quality assurance in the process of developing EC based components for other
systems and applications; (ii) efficiency in allowing the rapid benchmarking of
distinct approaches in specific optimization tasks, mainly when taking advantage
of the currently available parallel hardware.



2 P. Evangelista et al

This paper introduces the Java Evolutionary Computation Library (JECoLi),
a reliable, adaptable, flexible, extensible and modular software framework that
allows the implementation of metaheuristic optimization algorithms, using the
Java programming language. The main contributions are its built-in capabilities
to take full advantage of multicore, cluster and grid environments and the inclu-
sion of a quality assurance platform, an added value in validating the software.

In this work, we show how independent parallelism models and platform
mappings can be attached to the basic framework to take advantage of new
computing platforms. Our objective is to support parallel processing allowing
the user to specify the type of parallelization needed. The parallelization models
are independent of the framework, and the user can specify the parallel execution
model to meet specific computational methods and resources, taking advantage
of the processing power of each target platform.

On the other hand, the quality assurance framework developed aims at pro-
viding a flexible way for both the developers of JECoLi and JECoLi-based appli-
cations to be able to validate the available features such as algorithms, operators,
parallelization features, etc. This framework should allow to conduct software
tests with minimal programming.

2 Main functionalities

JECoLi already includes a large set of EC methods: general purpose Evolution-
ary/ Genetic Algorithms, Simulated Annealing (SA), Differential Evolution, Ge-
netic Programming and Linear GP, Grammatical Evolution, Cellular Automata
GAs and Multi-objective Evolutionary Algorithms (NSGA II, SPEA2). Among
the parameters that can be configured, we find the encoding scheme, the repro-
duction and selection operators, and the termination criteria.

In JECoLi, solutions can be encoded using different representations. A gen-
eral purpose representation using linear chromosomes is available including bi-
nary, integer or real valued genes. Also, individuals can be encoded as permuta-
tions, sets and trees. Numerous reproduction operators are provided for each of
these representations. It is also possible to add new user-defined representations
and/ or reproduction operators.

A loose coupling is provided between optimization algorithms and problems
allowing the easy integration with other software. New problems are added
by the definition of a single class specifying the evaluation function. An ade-
quate support is also given to the development of hybrid approaches, such as
local optimization enriched Evolutionary Algorithms (EAs) (e.g. Memetic Al-
gorithms), hybrid crossover operators and initial population enrichment with
problem-specific heuristics.

The framework is developed in Java, being portable to the major systems.
The project is open source, released under the GPL license. Extensive docu-
mentation (howto’s, examples and a complete API), binaries and source code
releases are available in the Wiki-based project’s web site http://darwin.di.

uminho.pt/jecoli.



A Software Platform for Evolutionary Computation 3

3 Overall architecture and development principles

Fig. 1. Architecture of the JECoLi: main classes.

The JECoLi architecture was built to be an adaptable, flexible, extensible,
reliable and modular software platform. In Figure 1 a simplified class diagram is
shown, containing the main entities. The Algorithm abstraction represents the
optimization method. The information common to all algorithms was abstracted
in the AbstractConfiguration class. The algorithm dependent configuration de-
tails are stored in the concrete implementation. When an algorithm starts exe-
cuting, it checks all setup components, executes a specific initialization routine,
and finally executes a series of iterations. During the execution, each algorithm
holds an internal state that stores the current solution set, results and statistics
collected during the previous iterations. Several alternative termination criteria
can be defined (e.g. number of generations, function evaluations, CPU time).

Classes representing individuals implement interface ISolution, including the
genome (with a specific representation) and the fitness value(s). Implementation
of specific representations follow the IRepresentation interface. The solution fac-
tory design pattern was used to allow building new solutions and copying existing
ones. These factories are a centralized location for restrictions applied to a spe-
cific genome. Populations are implemented by the SolutionSet that implements
lists of solutions with enhanced functionalities.

An evaluation function is responsible for decoding an individual to a par-
ticular problem domain and providing for fitness evaluation. This makes the
connection between the problem and the algorithm domains. One of the major
aims was the extensibility of the platform, implemented by defining contracts
(using interfaces) for specific components enabling the addition of new algo-
rithms, representations, operators, termination criteria, etc.



4 P. Evangelista et al

4 Parallelization of the library

The parallelization strategy is based on three key characteristics:

– Non-invasive - parallelization should have minimal impact on the original
code; using/ developing functionalities in the base JECoLi does not require
the developer to have knowledge about the parallelism models/mappings;

– Localized - parallelization code should be localized in well defined modules;
– Pluggable - the original code can execute when parallelism modules are

added/ removed, i.e. parallelism modules are included on request.

Thus, the parallelization of the library consists of (i) the base JECoLi; (ii) a
set of non-invasive and pluggable modules that adapt the base framework to sup-
port parallel execution and a set of mappings that adapt the supported models
of parallel execution to each target platform; (iii) a tool that composes the base
framework with modules for parallel execution and platform mappings, accord-
ing to the user requests. Two distinct conceptual models for the parallelization
of EAs are implemented: (i) the island model; and (ii) the parallel solution eval-
uation. These models do not imply any specific parallel environment and can be
executed even in sequential architectures.

Fig. 2. Architecture of the Parallelization of JECoLi.

The parallelization of JECoLi is based on a three-layer architecture depicted
in Figure 2. The features were made based on layers: the first layer is the orig-
inal JECoLi; the second contains the parallelism models to use, and the last
one introduces the mapping of the parallel behavior to the execution platform.
The parallelism model layer contains the parallel models presented above: island
model and parallel execution of the evaluation. Three distinct modules were im-
plemented in this layer: Parallel Eval, BuildIslandModel and Abstract Migration,
implementing the parallelization features that encapsulate platform independent
behaviour. The first implements the model related to the parallel execution of
the evaluation of solutions, while the second and third are related to the imple-
mentation of the island model. The mappings layer contains all the specific code
to be loaded regarding a specific parallel platform. It encapsulates the mapping
of the parallelism models to meet specific target parallel environments: single
machine with multicore processor, clusters and grid environments.



A Software Platform for Evolutionary Computation 5

The implementation of the modules resorted to the use of Aspect Oriented
Programming (AOP) [2], a programming technique used to encapsulate crosscut-
ting phenomenona into specific modules of the programs. Technical details of the
full implementation of the modules are provided in the web site documentation.

5 Quality assurance framework

A generic test framework was engineered in order to validate JECoLi’s function-
alities. The main aim is to verify the correctness of the distinct components. The
tests treat each component of the library as a black-box entity with a predefined
set of inputs and a desired output. These are defined in order to cover all the
possible outcomes of an entity for a certain input even if the library component
only returns a partial result set. If the outcome of an entity is contained within
the full result set the test is considered valid.

A domain specific language (DSL) with an LL(1) grammar was conceived
to create JUnit tests [1] for the distinct components (algorithms, operators and
parallelization methods). This language captures the tests configuration skeleton.
Examples of configurations of specific tests are provided in the project web site.

Also, a test framework was developed encompassing a class hierarchy that
is given in the web site documentation. The implementation of the abstract
classes in the lower level of the class hierarchy only needs to detail component
configuration information. These structures allow to capture seamlessly the test
structure and to implement it in a domain specific language without the need
to program in Java to add new tests for existing components.

6 Applications

The library has already been used in several research projects, described in
the web site. Here, we highlight a few of these examples that have led to the
development of software applications:

– Metabolic engineering: the aim is microbial strain optimization, using in
silico simulations based on genome-scale metabolic models. EAs and SA
using a set-based representation have been used [5] and implemented as part
of the OptFlux software platform (www.optflux.org) [4], that represents a
reference open-source software platform.

– Fermentation optimization: aims at the numerical optimization of feeding
profiles in fed-batch fermentation processes in bioreactors [3]. EAs with a
real value representations and several variants of DE were tested and eval-
uated. The implementation of these approaches was included in a software
application named OptFerm (darwin.di.uminho.pt/optferm).

– Network traffic engineering: the aim is to implement methods to improve
the weights of intra-domain routing protocols [6]. Two approaches were used,
both using an integer representation: single objective EAs with linear weight-
ing objective functions and multiobjective EAs. These methods have been
incorporated into an application - NetOpt (darwin.di.uminho.pt/netopt).



6 P. Evangelista et al

7 Conclusions

This paper described the framework JECoLi, a Java-based platform for the im-
plementation of metaheuristic methods. The main strengths of this platform rely
on its efficiency, portability, flexibility, modularity and extensibility which make
it ideal to support larger applications that need to include an optimization en-
gine based on EC methods. The main focus of this library has been to support
this embedding capabilities also by making available a quality assurance frame-
work, including a domain specific language for building unit tests, that allows
the full coverage of the implemented features.

In terms of computational efficiency, one of the major concerns has been the
development of modules to support parallelism. The parallelization of JECoLi
was pursued in a pluggable, non-invasive and localized way, thus allowing the
original library to evolve with new features being added and also to allow the
automatic adaptation of the code to distinct scenarios in terms of hardware
resources (multicore, cluster, grid).

Most of the future work includes the improvement of the existing function-
alities. Also, we aim to develop new capabilities including new algorithms, rep-
resentations or selection/reproduction operators.

Acknowledgments

This work is supported by project PTDC/EIA-EIA/115176/2009, funded by
Portuguese FCT and Programa COMPETE.

References

1. Y. Cheon and G. Leavens. A simple and practical approach to unit testing: The
JML and JUnit way. ECOOP 2002, Object-Oriented Programming, pages 1789–
1901, 2006.

2. G.J. Kiczales, J.O. Lamping, C.V. Lopes, J.J. Hugunin, E.A. Hilsdale, and C. Boy-
apati. Aspect-oriented programming, October 15 2002. US Patent 6,467,086.

3. R. Mendes, I. Rocha, E. Ferreira, and M. Rocha. A comparison of algorithms for
the optimization of fermentation processes. In 2006 IEEE Congress on Evolutionary
Computation, pages 7371–7378, Vancouver, BC, Canada, jul 2006.

4. I. Rocha, P. Maia, P. Evangelista, P. Vilaça, S. Soares, J. P. Pinto, J. Nielsen, K.R.
Patil, E.C. Ferreira, and M. Rocha. Optflux: an open-source software platform for
in silico metabolic engineering. BMC Systems Biology, 4(45), 2010.

5. M. Rocha, P. Maia, R. Mendes, E.C. Ferreira, K. Patil, J. Nielsen, and I. Rocha. Nat-
ural computation meta-heuristics for the in silico optimization of microbial strains.
BMC Bioinformatics, 9(499), 2008.

6. P. Sousa, M. Rocha, M. Rio, and P. Cortez. Efficient OSPF Weight Allocation for
Intra-domain QoS Optimization. In Lecture Notes in Computer Science 4268, 16.
Autonomic Principles of IP Operations and Management, pages 37–48. Springer,
2006.


