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Abstract This paper describes the design and implementation of DExtor, a data-
mining-based exploit code detector that protects network services. DEx-
tor operates under the assumption that normal traffic to network ser-
vices contains only data whereas exploits contain code. The system is
first trained with real data containing exploit code and normal traffic.
Once it is trained, DExtor is deployed between a web service and its
gateway or firewall, where it operates at the application layer to detect
and block exploit code in real time. Tests using large volumes of normal
and attack traffic demonstrate that DExtor can detect almost all the
exploit code with negligible false alarm rates.
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1. Introduction

Remote exploits are often used by attackers to gain control of hosts
that run vulnerable services or software. Typically, an exploit is sent
as an input to a remote vulnerable service to hijack the control flow of
machine instruction execution. Attackers sometimes inject executable
code in the exploit that is run after a successful hijacking attempt. We
refer to such remote code-carrying exploits as “exploit code.”

Several approaches have been proposed for analyzing network flows
to detect exploit code [1, 4, 8–11]. An attack can be prevented if an
exploit is detected and intercepted while it is in transit to a server. This
approach is compatible with legacy code and does not require changes to
the underlying computing infrastructure. Our solution, DExtor, follows
this strategy. In particular, it uses data mining to address the general
problem of exploit code detection.
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Exploit code usually consists of three parts: (i) a NOP sled at the
beginning of the exploit, (ii) a payload in the middle, and (iii) return
addresses at the end. The NOP sled is a sequence of NOP instructions;
the payload contains the attack code; the return addresses point to the
code to be executed. Thus, exploit code always carries some valid exe-
cutables in the NOP sled and payload. It is considered to be an “attack
input” to the corresponding vulnerable service; inputs that do not ex-
ploit a vulnerability are referred to as “normal inputs.” For example, in
the case of a vulnerable HTTP server, benign HTTP requests are nor-
mal inputs while requests that exploit a vulnerability are attack inputs.
If we assume that normal inputs only contain data, then exploit code
detection reduces to a code detection problem.

Chinchani and Berg [1] justify this assumption by maintaining that
“the nature of communication to and from network services is predom-
inantly or exclusively data and not executable code.” However, certain
exploits do not contain code (e.g., integer overflow exploits and return-
to-libc exploits); we do not consider such exploits in this work. It is
also worth mentioning that exploit code detection is fundamentally dif-
ferent from malware detection, which attempts to identify the presence
of malicious content in an executable.

Our data mining approach uses three types of features to differenti-
ate between attack inputs and normal inputs. They are: (i) useful in-
struction count, (ii) instruction usage frequency, and (iii) code vs. data
length. The process has several steps. First, training data consisting
of attack inputs and normal inputs is collected. Next, the training ex-
amples are disassembled. Following this, the three types of features are
extracted from the disassembled data. Several classifiers (Support Vec-
tor Machine (SVM), Bayes Net, Decision Tree (J48) and Boosted J48)
are then trained and the best classifier is selected as the classification
model. When DExtor is deployed in a networking environment, it inter-
cepts inputs destined to the network service and tests them against the
classification model; attack inputs are blocked in real time.

DExtor has several advantages over existing exploit code detection
techniques. DExtor is compatible with legacy code and transparent to
the services it protects. The current version operates on Windows plat-
forms with the Intel 32-bit architecture, but can be adapted to any oper-
ating system and hardware simply by modifying the disassembler. Also,
DExtor does not require any signature generation and matching. Finally,
DExtor is robust against most attack-side obfuscation techniques.

DExtor also has forensic applications. For example, it can be used to
analyze network traffic sent to a server before a crash or compromise.



Masud, et al. 179

This helps determine whether the incident was caused by a code-carrying
exploit and also assists in identifying the source of the attack.

2. Related Work

Several techniques have been proposed for detecting exploits in net-
work traffic and protecting network services. The three main categories
of techniques are signature matching, anomaly detection and machine-
code analysis.

Signature matching is used in intrusion detection systems such as
Snort [8] and Bro [4]. These systems maintain a signature database of
known exploits; an alert is raised when traffic matches a signature in the
database. Signature-based systems are easy to implement, but they are
defeated by new exploits as well as by polymorphism and metamorphism.
DExtor does not use signature matching to detect exploit code.

Anomaly detection techniques identify deviations in traffic patterns
and raise alerts. Wang and co-workers [11] have designed PAYL, a
payload-based system that detects exploit code by computing several
byte-level statistical measures. Other anomaly-based detection systems
are an enhanced version of PAYL [10] and FLIPS [5]. DExtor differs from
anomaly-based systems in two respects. First, anomaly-based systems
are trained using normal traffic characteristics and detect deviations
from these characteristics; DExtor considers both normal and attack
traffic in building its classification model. Second, DExtor uses instruc-
tion patterns instead of raw byte patterns to construct its classification
model.

Machine code analysis techniques apply binary disassembly and static
analysis of network traffic to detect the presence of executables. DExtor
falls in this category. Toth and Kruegel [9] have used binary disas-
sembly to find long sequences of executable instructions and identify
the presence of a NOP sled. DExtor also applies binary disassembly,
but it does not need to identify a NOP sled. Like DExtor, Chinchani
and Berg [1] detect exploit code based on the assumption that nor-
mal traffic should contain no code. They apply disassembly and static
analysis, and identify several structural patterns and characteristics of
code-carrying traffic. However, unlike DExtor, their detection approach
is rule based. SigFree [12] also disassembles inputs to server processes
and applies static analysis to detect the presence of code. It applies a
code abstraction technique to locate useful instructions in the disassem-
bled byte stream and raises an alert when the useful instruction count
exceeds a predetermined threshold. DExtor applies the same disassem-
bly technique as SigFree, but does not use a fixed threshold. Instead,
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Figure 1. DExtor architecture.

it applies data mining to extract features and uses them to distinguish
between normal traffic and exploits.

3. DExtor

This section describes the DExtor architecture and its main compo-
nents.

3.1 DExtor Architecture

DExtor is deployed in a network between a network service and its
gateway or firewall (Figure 1). It is first trained offline with real instances
of attacks (e.g., exploits) and normal inputs (e.g., HTTP requests), and
a classification model is constructed. Training consists of three steps:
disassembly, feature extraction and classification. When it is deployed
in a network, DExtor intercepts and analyzes all inputs to the service in
real time; inputs that are identified as attacks are blocked.

3.2 Data Disassembly

The disassembly algorithm is similar to that used by SigFree [12].
Each input to the server is considered to be a byte sequence. There may
be more than one valid assembly instruction sequences corresponding to
a given byte sequence. The disassembler uses an “instruction sequence
distiller” to filter redundant and illegal instruction sequences. The main
steps of this process are:

Step 1: Generate instruction sequences

Step 2: Prune subsequences

Step 3: Discard smaller sequences



Masud, et al. 181

0 20 80 99 

bzone czone rzone

byte offset

= data only

= code interleaved with data

Figure 2. Three zones of an input instance.

Step 4: Remove illegal sequences

Step 5: Identify useful instructions

3.3 Feature Extraction

Feature extraction is the heart of DExtor’s data mining approach.
Three important features are used: (i) useful instruction count, (ii) in-
struction usage frequency, and (iii) code vs. data length.

Useful Instruction Count: The useful instruction count (UIC)
is the number of useful instructions found in Step 5 of the disassem-
bly process. This feature is important because a real executable
should have a large number of useful instructions; on the other
hand, pure data should have no useful instructions.

Instruction Usage Frequency: The instruction usage frequency
(IUF) is the frequency of an instruction in a normal or attack
sample. Intuitively, normal data should not have any bias toward
any specific instruction or set of instructions. Thus, normal data
should have a random IUF distribution. On the other hand, since
exploit code performs specific (malicious) activities, it must have
a bias toward a set of instructions and its IUF distribution should
have some pattern.

Code vs. Data Length: Exploit code has a NOP sled, payload
and return addresses. Consequently, each input instance is divided
into three zones: beginning zone (bzone), code zone (czone) and re-
mainder zone (rzone) (Figure 2). Typically, the bzone corresponds
to the first few bytes of an input that could not be disassembled
and contains only data. The czone follows the bzone and contains
the bytes that were successfully disassembled; it probably contains
some code. The rzone contains the remaining bytes in the input
that cannot be disassembled; it generally contains only data.

The normalized lengths (in bytes) of the three zones should have
different distributions for normal inputs and attack inputs. Intu-
itively, normal inputs should have the czone at any location with
equal probability, implying that the bzone and rzone distributions



182 ADVANCES IN DIGITAL FORENSICS IV

should be random. Also, since normal inputs have little to no
code, the length of the czone should be near zero. On the other
hand, exploit code begins with a NOP sled, which implies that the
length of bzone is zero. Also, the length of the czone for exploit
code should be greater than that for normal inputs. Thus, the dif-
ferences in the distributions of zone lengths for normal and attack
inputs can be used to identify the type of input.

3.4 Feature Combination

The features computed for each input sample are: (i) UIC – a single
integer, (ii) IUF – k integers denoting the instruction frequencies (k is
the number of different instructions in the training data), and (iii) CDL
– three real numbers corresponding to the lengths of bzone, czone and
rzone. Thus, k + 4 features are considered: the first k + 1 feature values
are integers and the last three are real numbers. These k + 4 features
constitute the combined feature vector for an input instance.

3.5 Classification

The Support Vector Machine (SVM), Bayes Net, Decision Tree (J48)
and Boosted J48 are used for classification. The SVM classifier is robust
to noise and high dimensionality; also, it can be fine-tuned to perform
efficiently in a problem domain. The Bayes Net classifier is capable of
finding the interdependencies existing between different attributes. The
Decision Tree (J48) classifier has an excellent feature selection capability,
and requires much less training and testing time than other classifiers.
The Boosted J48 classifier is useful because of its ensemble methods.

4. Experimental Setup and Results

This section describes the experimental setup and results.

4.1 Data Set

The data set contained real exploit code as well as normal traffic to
web servers. Strong efforts were undertaken to ensure that the data set
was as diverse, unbiased and realistic as possible.

The exploit code was obtained by generating twenty unencrypted ex-
ploits using the Metasploit framework [7]. Next, nine polymorphic en-
gines (ADMmutate [6], clet [2], Alpha2, CountDown, JumpCallAdditive,
Jumpiscodes, Pex, PexFnstenvMov and PexFnstenvSub) were applied to
the unencrypted exploits. Each polymorphic engine was used to generate
1,000 exploits, yielding a collection of 9,000 exploits.
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The normal inputs were traces of HTTP requests/responses to/from
a web server. The traces were collected by installing a client-side proxy
that monitored and captured all incoming and outgoing messages. More
than 12,000 messages containing HTTP requests and responses were
collected. The responses comprised text (.javascript, .html, .xml),
applications (x-javascript, .pdf, .xml), images (.gif, .jpeg, .png),
audio (.wav), and flash content.

Two types of evaluation were performed on the data. First, five-
fold cross validation was conducted to measure the accuracy and the
false positive and false negative rates. Second, the performance of the
classifiers was tested on new exploits. This was done by training a
classifier using the exploits generated by eight of the nine polymorphic
engines and testing it using the exploits generated by the ninth engine.
The test was performed nine times by rotating the polymorphic engine
that was tested. Normal examples were distributed in the training set
and test set in equal proportions.

4.2 Experiments

The experiments were run on a 2 GHz Windows XP machine with
1 GB RAM. The algorithms were written in Java and compiled with
JDK version 1.5.0 06. The Weka ML Toolbox [13] was used for the clas-
sification tasks. SVM classification used the C-Support Vector Classifier
(C-SVC) with a polynomial kernel and γ = 0.01. Bayes Net used a sim-
ple estimator with α = 0.5 and a hill-climbing search for the network
learning. J48 used tree pruning with C = 0.25. Ten iterations of the
AdaBoost algorithm were performed to generate ten models. Each of the
three features was tested alone on a classifier (with the classifier being
trained and tested with the same feature).

4.3 Results

Three metrics were used to evaluate the performance of DExtor: ac-
curacy (ACC) and the false positive (FP) and false negative (FN) rates.
ACC is the percentage of correctly classified instances, FP is the per-
centage of negative instances incorrectly classified as positive instances,
and FN is the percentage of positive instances incorrectly classified as
negative instances.

Table 1 presents the performance of the classifiers for various fea-
tures. The highest accuracy (99.96%) was obtained for DExtor’s com-
bined feature (Comb) with the Boosted J48 classifier. The other features
have lower accuracies than the combined feature for all the classification
techniques. Also, the combined feature has the lowest false positive
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Table 1. Performance of classifiers for different features.

Feature IUC IUF CDL Comb

Metric ACC/FP/FN ACC/FP/FN ACC/FP/FN ACC/FP/FN

SVM 75.0/3.3/53.9 99.7/0.2/0.1 92.7/12.4/0.6 99.8/0.1/0.2
Bayes Net 89.8/7.9/13.4 99.6/0.4/0.4 99.6/0.2/0.6 99.6/0.1/0.9
J48 89.8/7.9/13.4 99.5/0.3/0.2 99.7/0.3/0.3 99.9/0.2/0.1
Boosted J48 89.7/7.8/13.7 99.8/0.1/0.1 99.7/0.3/0.5 99.96/0.0/0.1

SigFree 38.5/0.2/88.5

rate (0.0%) obtained with Boosted J48. The lowest false negative rate
was also obtained for the combined feature (0.1%). In summary, the
combined feature with Boosted J48 classifier produced near perfect de-
tection.

The last row of Table 1 shows the accuracy and false alarm rates of
SigFree with the same data set. SigFree used UIC with a fixed threshold
of 15. It has a low false positive rate (0.2%), a high false negative rate
(88.5%) and an overall accuracy of only 38.5%.
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Figure 3. ROC curves for different features with BoostedJ48.

Figure 3 shows the receiver operating characteristic (ROC) curves for
different features with the BoostedJ48 classifier. The area under the
curve (AUC) is the highest for the combined feature (which is 0.999).
The ROC curves for the other classifiers have similar characteristics;
they are not presented due to space limitations.
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Table 2. Effectiveness at detecting new exploits.

Classifier SVM BNet J48 BJ48

Metric ACC/FP/FN ACC/FP/FN ACC/FP/FN ACC/FP/FN

Admutate 86.4/0.2/31.7 57.4/0.0/100 98.2/0.0/4.3 99.7/0.0/0.6
Alpha2 99.9/0.07/ 0.0 56.4/0.0/100 56.4/0.0/100 56.4/0.0/100
Clet 100/0.0/0.0 99.6/0.07/0.8 99.9/0.1/0.0 99.9/0.07/0.0
CountDown 99.8/0.4/0.0 100/0.0/0.0 100/0.0/0.0 99.8/0.3/0.0
JmpCallAdditive 100/0.0/0.0 98.1/0.0/4.6 99.9/0.1/0.0 100/0.0/0.0
JumpisCode 99.4/0.08/1.4 96.2/0.08/8.8 99.9/0.07/0.0 99.9/0.07/0.1
Pex 99.7/0.2/0.4 99.4/0.0/1.4 99.8/0.2/0.2 99.8/0.1/0.3
PexFnStenvMov 99.9/0.0/0.0 99.1/0.0/2.1 99.9/0.07/0.1 99.9/0.0/0.2
PexFnStenvSub 99.7/0.2/0.3 99.3/0.0/1.7 99.8/0.08/0.1 99.9/0.08/0.0

Table 2 shows DExtor’s ability to detect new kinds of exploits. Each
row reports the detection accuracies and false alarm rates for one par-
ticular engine-generated exploit. As described earlier, each classifier was
trained using the exploits generated by the eight other engines and tested
using exploits from the ninth engine. For each engine, the training set
contained 8,000 exploits and about 10,500 randomly selected normal
samples, and the test set contained 1,000 exploits and about 1,500 ran-
domly chosen normal samples. The results in Table 2 show that all the
classifiers successfully detected the new exploits with an accuracy of 99%
or higher.

The total training time was less than 30 minutes, including disas-
sembly time, feature extraction time and classifier training time. This
amounts to about 37 ms per kilobyte of input. The average testing time
for the combined feature set was 23 ms per kilobyte of input, including
disassembly time, feature value computation time and classifier predic-
tion time. SigFree, on the other hand, required 18.5 ms for testing each
kilobyte of input. Since training is performed offline, DExtor requires
only 24% more running time than SigFree. Thus, the price-performance
trade-off is in favor of DExtor.

4.4 Analysis of Results

Figure 4 (left-hand side) shows the IUF distributions of the 30 most
frequently used instructions in normal inputs and attack inputs. Clear
differences are seen in the two distributions. The first five instructions
have high frequencies (> 11) for attack inputs, but have zero frequencies
for normal inputs. The next sixteen instructions in attack inputs have
frequencies close to two while the corresponding frequencies for normal
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Figure 4. Instruction usage frequencies and zone length distributions.

inputs are again near zero. An attacker who intends to write exploit code
that mimics normal inputs should avoid using these 21 instructions, but
it is difficult to create exploits without using these instructions.

Figure 4 also presents the distributions of the CDL feature values. The
histograms show the numbers of input samples having specific lengths
(as a fraction of total input size) for bzone (center) and czone (right-
hand side). The histograms are generated by dividing the entire range
of normalized bzone and czone lengths ([0, 1]) into 50 equal-sized bins,
and counting the number of input instances that fall in each bin. Note
that most of the attack samples in the bzone histogram have values in
the first bin (i.e., [0, 0.02)); on the other hand, the bzone values for
normal samples are spread over all the bins. Therefore, an attacker
wishing to mimic normal traffic should craft exploits that do not have
any code in the first 10% of the exploit; but this is difficult to accomplish
because exploits begin with a NOP sled. Similarly, the czone histogram
shows that most of the normal samples have czone values in the range
[0, 0.05] whereas attack samples mostly have czone values greater than
0.05. Therefore, in order to mimic normal traffic, an attacker should
keep his code length within 5% of the exploit’s length. For a 200-byte
exploit, this leaves only 10 bytes for the attack code – including the NOP
sled, making it extremely difficult to write the exploit.

5. DExtor Characteristics

This section discusses the robustness of DExtor’s exploit code detec-
tion methodology along with its limitations.

5.1 Robustness

DExtor is immune to instruction re-ordering because instruction order
is not considered in exploit code detection. Also, detection is unaffected
by the insertion of junk instructions as this only serves to increase the
frequencies of the junk instructions. Likewise, DExtor is immune to
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instruction replacement as long as all the most frequently used instruc-
tions are not replaced. DExtor is also robust against register renaming
and memory re-ordering because registers and memory locations are not
considered in exploit detection. Obfuscation by inserting junk bytes can
affect the disassembler, especially when junk bytes are inserted at lo-
cations that are not reachable at run-time. However, this problem is
addressed by the recursive traversal strategy employed by the disassem-
bly algorithm [3].

5.2 Limitations

DExtor is partially affected by branch function obfuscation, which
obscures the control flow of an executable so that disassembly cannot
proceed. Currently, there is no general solution to this problem. When
branch function obfuscation is present, DExtor is likely to produce frag-
mented code blocks, missing some of the original code. This does not
impact detection unless the missed blocks contain large numbers of in-
structions.

DExtor is certainly limited by its processing speed. Currently, DEx-
tor has a throughput of 42 KB/sec in a real environment. Such a low
throughput is unacceptable for an intrusion detection system that must
handle several gigabits per second. Fortunately, DExtor is intended to
protect just one network service, which requires much less throughput.

Nevertheless, the throughput issue can be addressed using faster hard-
ware and optimizing all the software components (disassembler, feature
extractor and classifier). Also, certain incoming traffic can be excluded
from analysis. For example, because exploit code is typically a few kilo-
bytes in length, bulk inputs to the server with size greater than a few
hundred kilobytes are unlikely to be exploit code. Both these solutions
should increase DExtor’s throughput sufficiently to enable it to operate
effectively in real-time environments.

6. Conclusions

DExtor uses data mining very effectively to detect and block exploit
code. Designed to operate at the application layer, DExtor is positioned
between the server and its gateway or firewall. It is completely trans-
parent to the service it protects, and can be deployed as a stand-alone
component or coupled with a proxy server. DExtor is robust against
most attack-side obfuscation techniques. Tests using large volumes of
normal and attack traffic demonstrate that DExtor can detect exploit
code with very high accuracy and negligible false alarm rates. Further-
more, DExtor is able to detect new types of exploits with high accuracy.
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DExtor is also useful in forensic investigations, especially in determining
whether a crash or compromise was caused by a code-carrying exploit.
In addition, it can assist in identifying the source of the exploit.
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