
Chapter 25

AN EVIDENCE ACQUISITION TOOL
FOR LIVE SYSTEMS

Renico Koen and Martin Olivier

Abstract Evidence acquisition is concerned with the collection of evidence from
digital devices for subsequent analysis and presentation. It is extremely
important that the digital evidence is collected in a forensically-sound
manner using acquisition tools that do not affect the integrity of the
evidence. This paper describes a forensic acquisition tool that may be
used to access files on a live system without compromising the state of
the files in question. This is done in the context of the Reco Platform, an
open source forensic framework that was used to develop the prototype
evidence acquisition tool both quickly and efficiently. The paper also
discusses the implementation of the prototype and the results obtained.

Keywords: Live systems, evidence acquisition, Reco Platform

1. Introduction

Traditional or “dead” forensics involves the recovery of evidence from
computer systems that have been powered down [1, 3]. Unfortunately,
shutting down a system results in the loss of important volatile data.
Also, it may not be possible to shut down vital enterprise systems to
conduct forensic investigations.

Live forensics [1, 3] is an attractive alternative to dead analysis, en-
abling an investigator to recover and analyze data while a computer
system is running. However, this technique does have limitations due to
the possible presence of an intermediary, such as a rootkit, which may
modify data before it is presented to the investigator. Even if a rootkit
is not present, the mere fact that an untrusted piece of code, in the form
of a normal operating system service, was used to retrieve the forensic
data may cast doubt on the validity of the data.



326 ADVANCES IN DIGITAL FORENSICS IV

Operating system services execute in various layers. Depending on its
location and functionality, a rootkit may hijack services in any of these
layers. In particular, a rootkit hides its presence by modifying system
services. For example it may exclude itself from the list of processes
displayed to users or it may remove the names of its own files from file
lists. In order to do this effectively, a rootkit ideally operates at the
lowest possible layer (kernel layer); if it knows what information has
been requested, it is easier to remove traces of itself.

Given this fact, the reliability of digital evidence retrieved from a
lower layer is potentially higher than that retrieved from a higher layer.
Obtaining information from a lower layer not only bypasses rootkits in
the higher layers, but also shortens the chain of services used to answer
a query. If fewer services are involved, the probability that one of them
has been modified is lower than in the case of a longer chain of services.
However, if data is to be retrieved from a lower layer, it is necessary to
reconstruct the higher-level information structures – ideally using code
that is known to be reliable.

This paper describes a prototype forensic acquisition tool that accesses
low level information from a disk during live analysis. The tool uses its
own code to reconstruct the logical files that exist above the low level
information on disk. The implementation is based on the Reco Platform
[7], which was designed to allow rapid prototyping of forensic tools,
including tools that emerge from academic research and one-of-a-kind
tools needed for special investigations. The platform ensures that as
much code as possible is reused; this increases the reliability of evidence
and its potential admissibility in legal proceedings. The Reco Platform
also enables investigators to utilize other tools built using the platform,
thereby increasing the range of collection and analysis possibilities.

2. Live Evidence Acquisition

It is important to ensure that digital evidence is not modified dur-
ing a live acquisition process. Walker [17] observes that even a single
file timestamp found to be later than the date of acquisition may cause
digital evidence to be declared inadmissible in court. Any file accessed
from a logical partition, which is mounted in standard read/write mode,
may have some of its attributes (e.g., access time) modified by the oper-
ating system when it is accessed. The ability of the operating system to
update the file access time is useful for system administrators, but it is
highly undesirable for digital forensic investigators. The use of standard
file access routines supplied by the operating system should, therefore,
be avoided during live evidence acquisition.



Koen & Olivier 327

Casey [5] notes that standard operating system copy routines should
also be avoided due to presence of rootkits. Live acquisition software
should, therefore, have the capability to perform low-level file access
without the help of the operating system. Moreover, all files should be
accessed in read-only mode to preserve the integrity of file data and
metadata [5]. This is because the state of a file system mounted in
read/write mode is implicitly modified whenever a file is accessed.

Another, more technical, requirement for a live acquisition tool is
static compilation and storage of binaries used to perform acquisitions.
According to Adelstein [1], an investigator should never trust binaries
stored on the system in question; rather, the investigator should employ
statically-compiled binaries that do not use external libraries. The bina-
ries should, therefore, be stored on CD-ROM to ensure that they cannot
be altered.

3. Reco Platform

The Reco Platform was designed to provide the low-level functional-
ity required by digital forensic tools, thereby decreasing the time and
expertise required to develop prototypes. The platform is written in
C++ and compiles under Linux and Windows. It is published under
the popular GNU license [6], which enables the code to be used freely
in open source projects. Like other open source software [12], the Reco
source code can be inspected by programmers, helping create a stable,
forensically-sound platform that will compare favorably with expensive
commercial toolkits in terms of quality.

The Reco Platform provides multiple layers of software abstraction to
support forensic applications development and rapid prototyping. The
lower layers offer core functionality, giving developers limited abstraction
but more control; the upper layers supply a higher degree of abstraction,
but little control. Developers may choose the software layer that strikes
the right balance between abstraction and control. This section provides
an abbreviated discussion of the Reco architecture; interested readers are
referred to [8] for additional details.

The Reco Platform currently consists of five layers: (i) physical, (ii)
interpretation, (iii) abstraction, (iv) access, and (v) logging (Figure 1).
The physical layer, which offers the lowest degree of abstraction, em-
ulates the hardware devices from where digital evidence is collected.
Digital evidence in a popular forensic format (e.g., disk image or TCP-
Dump trace) is supplied to the physical layer. The physical layer uses
this digital evidence to emulate the functionality expected by the device



328 ADVANCES IN DIGITAL FORENSICS IV

Access Layer

Abstraction Layer

Interpretation Layer

Physical Layer

Digital Evidence

Logging
Layer

Figure 1. Reco Platform layers.

drivers that provide access to the evidence. This simplifies the task of
modifying third-party software drivers for use with the Reco Platform.

The interpretation layer is the second layer in the Reco hierarchy. This
layer typically models device drivers. The purpose of the interpretation
layer is to read low-level data supplied by the physical layer in block or
stream formats and convert it to a higher level of abstraction such as
file-based information (for block devices) and temporal information (for
stream-based devices).

The third layer is the abstraction layer. Its purpose is to supply
functionality that is not specific to any operating system or computing
platform. This is done in order to hide unnecessary details that may ob-
scure an investigator’s perception of the information conveyed by digital
evidence. Another purpose is to enable investigators to identify relation-
ships that may exist among different pieces of digital evidence. Tallard
and Levitt [16] note that this functionality is crucial to filtering data that
is not relevant and to creating abstract objects that can be interpreted
in a relational manner with other objects.

The fourth Reco layer, the access layer, provides access to information
generated by the lower layers. Searching, indexing and access control
functionality are implemented at this layer. Visual abstraction may also
be implemented at this layer to display digital information in a human-
oriented format. Wang [18] has observed that digital evidence is not well
perceived by the human senses. The access layer enables investigators
to view digital evidence in an organized and understandable manner,
helping increase their efficiency.

The uppermost logging layer provides the logging facilities needed
in digital forensic environments. Logging is an important part of any



Koen & Olivier 329

Reco Interpretation Layer

Reco Physical Layer

Live Drive
Prototype

FAT EXT

Physical Device

Figure 2. Dependence of the prototype on the Reco Platform.

digital forensics tool. According to NIST [11], tools used for backing-up
disk data should log all errors and resolve the errors. The logging layer
is used at every level of abstraction in the Reco hierarchy to document
the actions applied to digital evidence.

4. Prototype Development

This section describes the prototype used for live analysis based on
the Reco Platform. The prototype relies on the Reco physical layer to
provide access to file system images and on the interpretation layer to
supply file access routines for accessing files in read-only mode (Figure
2).

The Reco Platform is designed to work with Linux and Windows.
In keeping with the Reco philosophy, the prototype was developed to
permit source code to compile and run under both operating systems.
The Reco Platform supports the FAT12, FAT16, FAT 32, EXT2 and
EXT3 file systems, which were more than adequate for developing the
prototype.

The next two subsections discuss issues related to the Linux and Win-
dows prototypes. Note that the low-level implementation details are
different for the two prototypes, but the higher-level algorithms are the
same.

4.1 Linux-Based Prototype

A device that contains a Linux file system is referred to as a block
device [15]. Block devices may be opened like any other file in the Linux
environment except that administrative privileges are required. Since
a block device can be opened as a file, it is possible to read data from
the device; this process is similar to reading data from an acquired hard
drive image.

The partition in which a file of interest exists is first located and
opened in read-only mode. The Reco Platform is then instructed to
use the opened file as the target for analysis. The easiest way to de-
termine which block device represents the logical partition in question



330 ADVANCES IN DIGITAL FORENSICS IV

is to inspect the contents of the file /etc/mtab [2]. This file contains
information about mounted partition types, their mount points and the
locations of the block devices containing the partitions. Unfortunately,
this technique has certain disadvantages. In particular, administrator
(root) privileges are required when a device is opened as a file and ac-
cess to the /etc/mtab file changes the state of the file system. One way
to access the /etc/mtab file without altering its access time is to open
the device on which the file is located via the Reco Platform, access the
file in read-only mode and then close the device. This method allows file
access without compromising the integrity of the file system, but prior
knowledge of the block device that maps to the mounted root partition
is required.

4.2 Windows-Based Prototype

In the case of a Windows environment, a logical device is opened as
a file and the Reco Platform is instructed to mount the open file as the
forensic target. Specifically, the logical device is opened as a file using the
CreateFile() API call with the filename “\\.\N” where N is the drive
letter representing the logical partition [13]. Note that administrator
privileges are required to perform this operation.

Next, the GetLogicalDrives() API call is used to determine which
logical drives are mounted [14]. The call returns a bitmap representing
the drive letters of the mounted logical partitions. Using this information
in combination with the CreateFile() method, it is possible to obtain
access to a logical partition as in the case of the Linux prototype. Having
determined the partition containing the file of interest, the file is located
and opened. The Reco Platform is then instructed to use the opened
file as the source of analysis, after which the files stored on the partition
become accessible to applications using the Reco framework.

4.3 Implementation

The prototype was written in the C++ programming language; its
graphical user interface was implemented using the wxWidgets frame-
work [19]. The prototype involves very little code (not including the
Reco code) and was developed in a very short time.

Source files were designed to compile in both Linux and Windows
without requiring a special makefile or changing the project source
code. Platform-specific sections of code were marked for compilation
using preprocessor flags specific to the operating system in question. The
combination of the two approaches allowed for the development of code



Koen & Olivier 331

Figure 3. Screenshot of the prototype.

that runs under Linux and Windows without any major compatibility
issues.

5. Results

The tool was tested on Linux Fedora Core 4 and Windows XP. Exe-
cutables were generated that statically linked to the Reco library; this
was done to minimize dependence on external libraries.

The results obtained with the two operating systems were similar:
regular files could be accessed without modifying them or their meta-
data. A mounted logical partition could be opened by the prototype, the
directories in the partition in question could be browsed and files could
be copied to another partition to allow forensic examiners to inspect
their contents. Figure 3 shows a screenshot of the prototype.

A comparison was conducted of the access times required by the file
system drivers used by the prototype. An application was developed
that created images of different sizes on the logical partitions targeted
by the file system drivers. The created files were then read, and the time
taken to read each consecutive file was recorded for each distinct logical
partition.

The graph in Figure 4 shows the efficiency of the drivers used by the
Reco Platform. The EXT file system driver shows a linear increase in



332 ADVANCES IN DIGITAL FORENSICS IV

1 MB 25 MB 50 MB 100 MB 150 MB

C
o

m
p

le
ti

o
n

 T
im

e
 (

s
e
c
o

n
d

s
) 100

90

80

70

60

50

40

30

20

10

0

EXT FAT

Figure 4. Access times for Reco file system drivers.

access time as the file size increases. This result is expected because
more work is performed when more data is accessed.

The FAT file system driver yielded less desirable results. Signs of
an exponential increase are seen when the amount of data accessed in-
creases. This is unfortunate because it shows that the Reco Platform is
unable to provide fast access to large files stored in a FAT partition.

Because the higher-level operating system layers were bypassed when
the acquisitions were performed, it can be assumed that the results ob-
tained would be immune to most rootkits. Note that although rootkits
are bypassed using this method, it is by no means a comprehensive way
to neutralize rootkits in general. This is largely due to the limited in-
volvement that an operating system has in controlling logical devices.

When access is required to a logical device, the prototype sends a
request to the underlying operating system for permission to open a
logical drive as a file. When data needs to be read from the logical
drive, a read request is sent to the operating system to perform the
task. A sophisticated kernel rootkit that has the same file processing
capabilities as the Reco Platform could, in theory, return blocks of code
that were maliciously engineered to hide traces of data, or it could inject
falsified information. Although such a rootkit would be rare due to its
complexity, it might be possible for a malicious programmer to develop
one using enabling tools like the Reco Platform.

6. Conclusions

The live evidence acquisition tool described in this paper can be used
to access files on a live target without compromising the state of the
files. The evidence acquisition tool leverages the Reco Platform, an open



Koen & Olivier 333

source framework designed for the rapid prototyping of forensic tools.
With only a few lines of code, it was possible to quickly and efficiently
develop Linux and Windows prototypes that provide true read-only ac-
cess to FAT12/16/36 and EXT2/3 partitions without modifying files and
their metadata.

However, two principal limitations exist, both of which should be
considered in the context of live analysis. First, access to files stored
in a logical partition requires administrator privileges. Second, access
to file system data is by no means absolute – the low-level data access
mechanisms can be bypassed by sophisticated kernel rootkits.

References

[1] F. Adelstein, Live forensics: Diagnosing your system without killing
it first, Communications of the ACM, vol. 49(2), pp. 63–66, 2006.

[2] BrunoLinux.com, FSTAB and MTAB (www.brunolinux.com/02-
The Terminal/Fstab and Mtab.html).

[3] B. Carrier, Risks of live digital forensic analysis, Communications
of the ACM, vol. 49(2), pp. 56–61, 2006.

[4] E. Casey, Error, uncertainty and loss in digital evidence, Interna-
tional Journal of Digital Evidence, vol. 1(2), 2002.

[5] E. Casey and A. Stanley, Tool review – Remote forensic preservation
and examination tools, Digital Investigation, vol. 1(4), pp. 284–297,
2006.

[6] Free Software Foundation, GNU general public license, Boston,
Massachusetts (www.gnu.org/copyleft/gpl.html).

[7] R. Koen, Reco Platform (sourceforge.net/projects/reco).

[8] R. Koen and M. Olivier, An open-source forensics platform, Pro-
ceedings of the Southern African Telecommunication Network and
Applications Conference, 2007.

[9] W. Kuhnhauser, Root kits: An operating systems viewpoint, ACM
SIGOPS Operating Systems Review, vol. 38(1), pp. 12–23, 2004.

[10] Linux Journal Staff, Take command: What is dd? Linux Journal,
vol. 1996(32es), no. 11, 1996.

[11] J. Lyle, NIST CFTT: Testing disk imaging tools, International
Journal of Digital Evidence, vol. 1(4), 2003.

[12] D. Manson, A. Carlin, S. Ramos, A. Gyger, M. Kaufman and J.
Treichelt, Is the open way a better way? Digital forensics using
open source tools, Proceedings of the Fortieth Annual Hawaii Inter-
national Conference on System Sciences, p. 266b, 2007.



334 ADVANCES IN DIGITAL FORENSICS IV

[13] Microsoft Corporation, CreateFile Function, Redmond, Washington
(msdn2.microsoft.com/en-us/library/aa363858.aspx).

[14] Microsoft Corporation, GetLogicalDrives Function, Redmond, Wa-
shington (msdn2.microsoft.com/en-us/library/aa364972.aspx).

[15] D. Rusling, The File System (www.science.unitn.it/∼fiorella/guide
linux/tlk/node94.html).

[16] T. Stallard and K. Levitt, Automated analysis for digital forensic
science: Semantic integrity checking, Proceedings of the Nineteenth
Annual Computer Security Applications Conference, pp. 160–167,
2003.

[17] C. Walker, Computer forensics: Bringing the evidence to court
(www.infosecwriters.com/text resources/pdf/Computer Forensics
to Court.pdf), 2007.

[18] S. Wang, Measures of retaining digital evidence to prosecute
computer-based cyber-crimes, Computer Standards and Interfaces,
vol. 29(2), pp. 216–223, 2007.

[19] wxWidgets, What is wxWidgets? (www.wxwidgets.org).


