Chapter 15

IN-PLACE FILE CARVING

Golden Richard III, Vassil Roussev and Lodovico Marziale

Abstract File carving is the process of recovering files from an investigative tar-
get, potentially without knowledge of the filesystem structure. Current
generation file carvers make complete copies of recovered files. Unfor-
tunately, they often produce a large number of false positives — “junk”
files with invalid formats that frequently consume large amounts of disk
space.

This paper describes an “in-place” approach to file carving, which
allows the inspection of recovered files without copying file contents.
The approach results in a significant reduction in storage requirements,
shorter turnaround times, and opens new opportunities for on-the-spot
screening of evidence. Moreover, it can be used to perform in-place
carving on local and remote drives.

Keywords: File carving, in-place carving

1. Introduction

File carving is a useful digital forensic technique for recovering files
from an investigative target, potentially without knowledge of the filesys-
tem structure. The process is based on information about the format of
the files of interest and on assumptions about how the file data is laid
out on the block-level device. Filesystem metadata is typically used —
if at all — only to establish cluster sizes and to avoid carving undeleted
files (which can be extracted without file carving).

Unfortunately, the current practice of carving recovered data into new
files carries a huge performance penalty that is inherent and cannot
be solved by optimizing the carving application. The only justification
for this approach is that virtually all the tools used to view or process
the recovered data require a file-based interface to the data. A new
strategy is needed that provides a filesystem interface to the output
of the carver without actually creating carved files. In other words,



218 ADVANCES IN DIGITAL FORENSICS III

In-Place

Host Forensic Carving

File
System Target e

%

Traditional

Gy (=
——l

— i .

Figure 1. Conceptual differences between traditional and in-place carving.

if a filesystem interface is provided to candidate files without physically
recreating them, existing forensic tools can still be used without creating
new files, many of which will likely be invalid. We call this approach
“in-place” file carving. The approach is similar to that used by current
filesystems, except that filesystem metadata is stored outside the target.

Figure 1 illustrates the differences between traditional and in-place
carving. The host filesystem and forensic target can be thought of as
“input” to both traditional and in-place carving. In traditional carving,
both the metadata and the data for carved files are dumped into the host
filesystem and the target has no significant role after the carving opera-
tion completes. In the case of in-place carving, a database of metadata is
inserted into the host filesystem, indicating where potentially interesting
files are located in the target.

To understand our motivation, consider a recent case, in which carving
a wide range of file types in a modest 8 GB target yielded more than 1.1
million files that exceeded the capacity of the 250 GB drive being used.
This represents an “over-carving” factor of more than 32. Clearly, this
is a pathological case and an expert user might be able to substantially
reduce the number of carved files and the required storage by tinkering
with the carving rules. However, with drives in the 200-300 GB range
being fairly typical for desktop systems, even an over-carving factor of
two or three puts a significant burden on an investigator’s resources.
First, he must purchase and dedicate a significant amount of tempo-
rary storage for file carving. Then, he must pay a substantial price in
performance that could easily add days to the investigation.



Richard, Roussev & Marziale 219

It is not difficult to pinpoint the reasons for the huge performance
penalty. The Scalpel file carving tool we use in our experiments [6] al-
lows us to separate the time taken to identify the candidate files from
the time taken to recreate them in the host filesystem. Scalpel performs
these two tasks in separate passes. In the first pass, the entire target is
processed sequentially to identify the locations of candidates for carving.
The result is a list of carving jobs indicating which sequences of blocks
constitute candidate files. Given a non-trivial number of rules, the pro-
cess is CPU-bound because a large number of binary string searches
must be performed. During the second pass, the carving jobs are car-
ried out by placing copies of the identified data blocks into newly created
files. This is a completely I/O-bound process with write access to the
host filesystem being the limiting factor. In general, if there are a large
number of candidates to carve, the second pass will require much more
time than the first pass.

Although the root of the problem is the false positives generated by
the carving rules, the performance penalty is the result of recreating
the carved files. Specifically, the main culprit is the randomized set of
write accesses generated during the carving process, which causes worst-
case performance for mechanical hard drives because writing disk blocks
and updating filesystem metadata generate non-sequential disk accesses.
Obviously, any over-carving will guarantee randomized disk accesses as
the same data block is copied to more than one new location on the
host filesystem and the corresponding file metadata is updated. It is
worth observing that any optimizations based on interleaving/pipelining
Scalpel’s two passes (as some other tools attempt to do) has limited
potential and will not solve the problem. This is because the creation of
carved files clearly dominates total execution time.

Arguably, the penalty for recreating the candidates goes beyond the
carving itself and is carried into the subsequent processing steps. Con-
sider our 8 GB target and a “reasonable” over-carving factor of two,
and assume that the goal is to carve out all JPEG images. On a modern
workstation with 4 GB RAM, 40-45% of the target could conceivably
be cached. With proper clustering of file accesses based on information
generated by the carving application, it is possible to take advantage
of the caching effects most of the time. In contrast, reading 16 GB of
recreated files yields no tangible caching benefits due to non-overlapping
file operations.

The following subsections explore two baseline scenarios where in-
place carving can make a significant difference.



220 ADVANCES IN DIGITAL FORENSICS III

1.1 Large-Scale Carving

It is increasingly common to encounter terabyte-scale targets in digital
forensic investigations. We consider such targets as “large-scale” and
note that performance problems in dealing with them are compounded
by the fact that high-capacity drives tend to be noticeably slower than
the fastest drives available. However, we use the term “large-scale”
in a relative sense — any target that stretches or exceeds the available
resources would be viewed as being large-scale by the examiner, so even
a 100 GB target could prove to be a challenge. Economy is also an
important factor. The original design of Scalpel was motivated by the
fact that file carvers required “elite” hardware to perform acceptably.
We now address a different, but related question: Should an investigator
who wants to recover data from a 200 GB drive using file carving be
expected to have 1 TB or more of available disk space?

The answer is no because in-place carving is much more scalable than
traditional carving in terms of storage requirements. The contents of a
target are dominated by file data with metadata usually taking up well
under 5% of storage. By choosing not to copy file content (often more
than once), the overhead is limited to a small fraction of the target size.
In our 8 GB example, the new metadata for 1.1 million candidate files
would take up less than 128 MB if we allow 128 bytes of metadata per
file, or about 1.6% of the target size. Extrapolating to a 1 TB target,
the metadata is still small enough to fit on a miniature USB drive.

A second aspect of scalability is turnaround time. How long after ini-
tiating file carving operations can the examiner begin to work in earnest
on the results? Scalpel v1.60’s preview mode performs only the first
carving pass and then outputs a database of locations for candidate
files. This information is sufficient for the in-place carving architecture
described later in the paper to recreate metadata for candidate files on
the fly. This means that any of the candidate files from the 8 GB drive
mentioned earlier can be delivered after only about 70 minutes of work.

A third aspect to providing a scalable solution is the flexibility to react
to the specifics of the target by adjusting the carving settings to minimize
false positives or refocus the investigation. Traditionally, investigators
make several carving attempts to adjust maximum file sizes and the
set of file types to carve. These adjustments are mostly motivated by
performance concerns as carving a large number of file types can be
expensive. With in-place carving, a large number of file types with
large maximum carve sizes can be specified without incurring significant
performance penalties.



Richard, Roussev & Marziale 221

1.2 Triage

It is often desirable to preview a set of possible targets (or a very large
target) to judge the relevance of the data to an investigation. Such an
assessment, which can be performed in a forensic laboratory or in the
field, helps an investigator prioritize and filter targets. In the case of
file carving, only an in-place approach will deliver the necessary short
turnaround time.

Going a step further, it is possible to perform in-place file carving
on live machines that cannot be taken down for practical or legal rea-
sons. Live carving has the potential to increase voluntary cooperation
by equipment owners because critical machines can run uninterrupted.
While it would be more challenging to present the results of live file carv-
ing operations in court, the results may be useful in justifying a search
warrant for seizure of the equipment and a more stable “dead” investi-
gation. In a less restrictive environment, such as an internal corporate
inquiry, where the goal is not to go to court, live carving has even more
applications. The primary benefit of live in-place carving is that large
amounts of additional storage are not required. In fact, if network block
device [5] connectivity is used between the target and an investigator’s
machine, only additional storage for metadata for carved files is required
(this can be stored on a small USB device).

Another important aspect of in-place carving is that it preserves pri-
vacy because no copies of the file data are made. Furthermore, it should
be easy to gain owner cooperation as the investigator is unlikely to need
anything more than a USB device to initiate and store the carving re-
sults.

The forensic triage — whether in the lab or in the field — could be
performed in parallel on a group of machines controlled by a single in-
vestigator over a local network. The idea of an on-the-spot investigation
has been explored in a more general setting by the Bluepipe Project [3],
where file carving is just a special function that could be performed and
controlled in parallel.

So far, we have argued that traditional file carving approaches, which
create new files for each candidate, are wasteful and carry significant and
unavoidable performance overhead. The main contribution of this work
is to present an architecture for in-place carving and to demonstrate
that the benefits of file-based access to the candidates can be realized
by recreating file metadata without copying file contents.



222 ADVANCES IN DIGITAL FORENSICS III

2. Related Work

This section describes representative work on file carving and the tech-
nologies used to develop in-place carving tools.

2.1 File Carving

File carvers (e.g., [6, 7]) read databases of file headers and footers, and
rules defining specific file types, and then search target disk images for
occurrences of files of these types. The headers and footers are typically
binary character strings. The rules help reduce false positives. For
example, a rule may associate the footer closest to a discovered header;
another rule may indicate that files should be no larger than a specified
size. The goal is to identify the starting and ending locations of files in
disk images and “carve” (copy) sequences of bytes into regular files.

File carving is a powerful technique because files can be retrieved from
raw disk images regardless of the type of filesystem. File retrieval is pos-
sible even when the filesystem metadata has been completely destroyed.
For example, a file deposited on a FAT partition often can be recovered
even if the partition is reformatted as NTFS, then ext2, then FAT again,
even if bad block checks (which are generally read-only operations) are
applied. While filesystem metadata is quite fragile, file data is much
more resilient. The problem with current file carvers is that they re-
quire considerable additional storage as large numbers of false positives
are generated. Good rules for guiding carving operations can reduce
the number of false positives (and the storage needed). However, our
in-place carving scheme requires virtually no additional storage. More-
over, the amount of time that an investigator has to wait to preview the
results is substantially reduced.

2.2 User-Space Filesystems

FUSE [8] is a system for the rapid development of novel filesystems.
The FUSE architecture is presented in Figure 2. A FUSE kernel compo-
nent, which implements a Virtual File System (VFS), traps system calls
and redirects them to a user-space filesystem implementation, which is
compiled against the FUSE library. This allows new filesystems to be
quickly designed and built without the complexity of in-kernel hacking.
The FUSE kernel module acts as a bridge to the VFS kernel interfaces.

To instrument system calls in FUSE, the new filesystem supplies a
table of functions that redefine standard system calls (e.g., open, read,
write and close). Each of the functions can completely redefine the
system call or augment its functionality.



Richard, Roussev & Marziale 223

Filesystem
Implementation

‘ dd if=fevidence/DEC/img.dd of=copy.dd ‘

FUSE library

read() ’7 —‘
user space ‘ C library ‘ ‘ C library ‘
kernel space
FUSE
Linux
Virtual File System
Interface o
(VFS)
reiserFS

Figure 2. FUSE architecture.

FUSE currently has ports for Linux and FreeBSD and a number of
language bindings, including C, C++, Python and Perl. FUSE is being
actively developed and is in widespread use; one of the most important
uses of FUSE is NTFS support in Linux [10]. FUSE (kernel version
2.6.14) is integrated into the Linux kernel. Our in-place carving system
uses FUSE to present a standard filesystem interface for files carved
in-place.

2.3 Networked Access to Physical Block Devices

A network block device [5, 11] provides a traditional local interface
to a remote (or distributed) block device, enhancing performance [4,
11} and/or accessibility [5]. We use the Linux network block device
(NBD) [5] to facilitate in-place carving of live remote targets. The NBD
simulates a block device (e.g., hard disk or hard disk partition) using a
Linux kernel module and a user-space application on the client side and
a user-space application on the server side. Server-side application ports
are available for virtually all Unix platforms and for Microsoft Windows.

2.4 CarvF's

In parallel with our in-place file carving efforts related to the ScalpelF'S
tool, the Dutch National Police Agency (DNPA) has been developing a
similar tool called CarvFs [9]. Unlike ScalpelF'S, CarvFs does not use
a database to store metadata, but instead relies on designation and file



224 ADVANCES IN DIGITAL FORENSICS III

‘ client applications ‘
i

\ scalpel_fs |

nbd server

&/ remote drive

Figure 3. In-place file carving architecture.

path properties. The DNPA refers to this technique as “zero-storage”
rather than “in-place” carving. Furthermore, whereas ScalpelF'S focuses
on accessing disks either directly or using smb, CarvF's focuses on access-
ing disk images (primarily ewf). The current release of CarvFs provides
patched versions of some Sleuth Kit [1] tools, and a post-processing
script to work with Scalpel’s preview mode. Currently the viability of
integrating the ScalpelF'S and CarvFs efforts is being investigated.

3. In-Place File Carving

This section discusses the architecture and performance of ScalpelF'S.

3.1 Architecture

A multi-level architecture is employed to achieve the time and space
savings characteristic of our in-place carving approach. The ScalpelF'S
architecture has three main components: Scalpel v1.60, which provides
a new “preview” mode, a custom FUSE filesystem for providing a stan-
dard filesystem view of carved files, and a Linux network block device,
which allows carving of remote disk targets (Figure 3). The architecture
supports live and dead investigative targets, and local and NBD disks.
Carving operations may be performed on the same machine that hosts
the target disk device (or image) or on a separate investigative machine.

Operating above a remote disk target is the network block device
server, which provides live, remote access to the disk. Local disks are
accessed directly by the Scalpel file carver that operates in the preview
mode. When operating in this mode, Scalpel executes file carving rules
specified in its configuration file to identify candidate files for carving



Richard, Roussev & Marziale 225

on the disk devices. These files are only potentially interesting, as cur-
rent carving strategies may generate copious amounts of false positives,
depending on the carver configuration. Normally, Scalpel would then
carve the disk blocks associated with candidate files and write them out
to new files. In the preview mode, however, Scalpel produces entries in a
database detailing the starting positions of files on a device, whether or
not the files are truncated, their length, and the devices on which they
reside. These entries have the following format:

filename start truncated length image
htm/00000076.htm 19628032 NO 239 /tmp/linux-image
jpg/00000069. jpg 36021248 NO 359022 /tmp/linux-image
htm/00000078.htm 59897292 NO 40 /tmp/linux-image

jpg/00000074.jpg 56271872 NO 16069 /tmp/linux-image

The original names of files are typically not available when file carving
is used for data recovery, so Scalpel assigns a unique pathname to each
carved file. The pathname indicates where the files would be created if
Scalpel were not operating in preview mode.

Our custom FUSE filesystem, scalpel fs, accesses the Scalpel pre-
view database and the targeted disk devices. The scalpel_fs applica-
tion is implemented in C against the FUSE API and provides the stan-
dard Linux filesystem interface to files described in the Scalpel preview
database, without carving the files from the target device.

Executing scalpel _fs with arguments detailing a directory to be used
as a mount point, a Scalpel preview database and the device that the
database was generated from causes the following actions to be taken.
First, a directory named scalpel fs is created under the mount point.
Then, using the carved file specifications in the preview database, a tree
of filesystem objects is created in a structure determined by the filenames
of the entries in the database. Files and directories are modeled as
fs_object structs:

struct fs_object {

int type; // file or directory

char *name; // this object’s fully qualified pathname
int start; // starting index in source image of file
int length; // size in bytes

char clipped; // true if the file was truncated

char *source; // the source image file name

struct fs_object *children; // empty for files

struct fs_object *next; // peer nodes



226 ADVANCES IN DIGITAL FORENSICS III

This tree structure provides the information necessary to present the
user with a filesystem appearing to contain the carved files from the
target devices. For efficiency, a pointer to each fs_object is also entered
into a hash table for fast lookups. Listing the contents of the mounted
directory shows one directory named scalpel fs. Inside the scalpel fs
directory are files and directories that mirror those in the filesystem tree
created from the Scalpel preview database.

All file-oriented system calls targeting the mount point are inter-
cepted. Preceding most filesystem operations is a call to getattr for the
filesystem object in question; this returns a stat structure containing
information such as object type (file, directory, etc.), size, creation, ac-
cess and modification times, and permissions. On receiving the getattr
call, scalpel fs dynamically constructs and returns a new stat struc-
ture with type and size taken from the fs_object for the object and
creation/modification/access times and permissions duplicating those in
the scalpel fs directory. Directory listings are created on the fly us-
ing the “children” structures of the fs_object for the directory being
listed. Opening a file returns a file handle after first checking that the
fs_object is in the hash table.

Attempts to read a file are handled as follows: the target device is
opened and reading begins at the offset given by the start member of
the fs_object struct for the file (plus any offset passed to the read op-
eration itself). This is all transparent to the client application and to
the user. Other non-write filesystem operations also work transparently
(e.g., access, getattr and readdir). Operations that create content
(e.g., write, mkdir and link) are disallowed to maintain the forensic
soundness of the target. An exception is the delete (unlink) opera-
tion, which is allowed, but only in a shallow manner: the fs_object for
the deleted file is removed but the target disk device is left untouched.
This removes the file from the view provided by scalpel fs without
destroying any data.

At the top level of the system are other user-level applications. They
can freely and transparently operate on the files under the mount point
as if they were regular files (aside from the disallowed write operations).
A user can obtain cryptographic hashes of the files with hashing pro-
grams, view the files in text editors or image viewers, or use specialized
forensic software on the files. This is particularly useful in an investiga-
tion involving image files (e.g., JPG or GIF images) as the images can
be previewed as thumbnails by most filesystem browsers. Note that all
of this occurs without the need to use large amounts of storage space as
in the case of a normal carving operation.



Richard, Roussev & Marziale 227

Table 1. Experimental results for an 8 GB target.

Carving Description Execution Time Total # of files carved Total disk space required
regular, all file types, 8GB | Out of disk space - >>250GB

local disk image

preview, all file types, 80m56s 1,125,627 62MB (for metadata)
8GB local disk image

regular, constrained set of | 222mlls 724,544 212GB

file types, 8GB local disk

image

preview, constrained set of | 63m22s 724,544 39MB (for metadata)
file types, 8GB local disk

image

regular, image file formats | 60m35s 9,068 5.9GB

only (JPG, GIF, PNG,
BMP), 8GB local disk
image

preview, image file 26m28s 9,068 500K (for metadata)
formats only (JPG, GIF,
PNG, BMP), 8GB local
disk image

3.2 Performance Study

We conducted several experiments to test the advantages of in-place
carving. This section reports the results of experiments conducted with
8 GB and 100 GB targets.

Table 1 presents the experimental results for an 8 GB target; an
empty 250 GB IDE drive was used to store the carving results. The
machine performing the carving operations was a 933 MHz Pentium III
with 512 MB RAM running CentOS Linux v4.3. An “unrestricted” full
carve of the drive, using all the file types supported in the standard
Scalpel v1.60 configuration file, crashed with an out of disk space er-
ror 7% during Scalpel’s second carving pass (after almost 1,000,000 files
were carved). Clearly, the disk space required to complete this carving
operation would be very much more than 250 GB. In contrast, using
Scalpel’s “preview” mode, the same carving operation completed within
1 hour and 20 minutes, yielding an index for 1,125,627 files.

For a more concrete comparison, the number of carved file types was
reduced substantially and the test was repeated. This time, the full
carve took about 3 hours and 42 minutes, carving 724,544 files that
consumed 212 GB of disk space. In contrast, the preview carve took
only 1 hour and 3 minutes, and consumed only 39 MB (for the in-place
carving metadata).

Reducing the number of file types further and carving only image
file formats (JPG, GIF, PNG, BMP), resulted in 9,068 carved files in



228 ADVANCES IN DIGITAL FORENSICS III

Table 2. Experimental results for a 100 GB target.

Carving Description Execution Time Total # of files carved Total disk space required

preview, restricted file 103m30s 1,338,766 71MB (for metadata)
types, 100GB, local

preview, restricted file 131m27s 1,338,766 71MB (for metadata)
types, 100GB, NBD

regular, restricted file - 1,338,766 59TB
types, 100GB, local

preview, image file 77ml5s 470,181 25MB (for metadata)
formats (JPG, GIF, PNG,
BMP), 100GB, local

preview, image file 106m27s 470,181 25MB (for metadata)
formats (JPG, GIF, PNG,
BMP), 100GB, NBD

regular, image file - 470,181 313GB
formats (JPG, GIF, PNG,
BMP), 100GB, local

approximately 60 minutes, requiring 5.9 GB of storage for a normal
carving operation. A preview carve with the same parameters finished
in 26 minutes and required 500 K of storage for metadata. The results
in this case are obviously much closer, but in-place carving is still more
efficient. Also, in-place carving has advantages over traditional carving
in situations where it is important that no copies of the files are created
until the investigation progresses (e.g., child pornography cases).

We were also interested in measuring the performance of carving op-
erations over Linux’s network block device (NBD), since we support
carving of live remote disk targets over NBD. We ran a simple experi-
ment using the Pentium III machine described above as the NBD server,
providing access over a quiet gigabit network to the 8 GB disk image.
A Thinkpad T40p with a 1.6 GHz Pentium 4M processor and 2 GB of
RAM, also running CentOS Linux, was used to perform carving opera-
tions over NBD. Carving only JPG images (in preview mode) required 16
minutes and 10 seconds. Performing the same carve over a 100 megabit
LAN increased the time to 31 minutes and 10 seconds. A local pre-
view carve, using a copy of the 8 GB image loaded on the T40p, took 7
minutes and 40 seconds.

Table 2 presents the results of experiments conducted on a 100 GB
target. The machine performing the carving operations was a 3 GHz
Pentium 4 with 2 GB RAM running Centos 4.3. Using Scalpel in preview
mode to carve a heavily restricted set of files types resulted in 1,338,766



Richard, Roussev & Marziale 229

files which, if carved by traditional methods, would have required 4.9 TB
of space. Our system used approximately 70 MB of space and took 1
hour and 43 minutes.

Carving the 100 GB target for only the image file formats listed above
resulted in 470,181 files, requiring approximately 25 MB of space and
taking 1 hour and 17 minutes. These files would have required 313 GB
if they were copied out of the image.

We also performed experiments over NBD with the 100 GB target.
Here we used 2 Pentium 4 machines as described above working over
an unloaded gigabit network. Preview carving for the set of image file
types listed above took 1 hour and 46 minutes. Preview carving for the
heavily restricted set of file types took 2 hours and 11 minutes.

4. Conclusions

Traditional file carving applications often require large amounts of
disk space to execute because they make copies of carved files. Since
many of these “recovered” files are false positives, the amount of data
carved can exceed the size of the target by an order of magnitude. For
larger targets, even more typical over-carving factors of two or three
can require too much disk space and have an unacceptable impact on
execution time.

The in-place carving approach proposed in this paper recreates file
metadata outside the target and uses the original forensic image for re-
trieving file contents on-demand. This strategy allows carving to be per-
formed faster and with significantly reduced disk storage requirements,
without losing any functionality. In-place file carving also facilitates
large-scale carving and on-the-spot carving. The architecture uses a
custom filesystem, the preview mode of the Scalpel file carver, and a
Linux network block device. Both “live” and “dead” forensic targets
are supported and carving operations can be executed on the machine
hosting the target disk or on a separate investigative machine.

Several enhancements to the in-place carving architecture are being
undertaken. Currently, ScalpelF'S does not support Scalpel’s options
for carving fragmented files. We are also working to reduce an inves-
tigator’s “wait time” by presenting a dynamically updated view of the
filesystem as file carving proceeds, allowing the investigator to process
files as they become available. This will require modifications to the
Scalpel file carver and some minimal changes to ScalpelFS. Finally, we
are investigating feedback mechanisms that perform file validation dur-
ing carving operations, disabling or prioritizing carving rules depending
on how many false positives are generated by particular carving rules.



230 ADVANCES IN DIGITAL FORENSICS III

The goal is to provide the investigator with “good” evidence as quickly
as possible, and to delay the processing of files that are unlikely to be
useful.

Acknowledgements

This work was supported in part by NSEF Grant CNS 0627226. The
authors are grateful to Daryl Pfeif of Digital Forensics Solutions for
suggestions that improved the organization of the paper.

References

[1] B. Carrier, The Sleuth Kit (www.sleuthkit.org).

[2] Digital Forensics Research Workshop (DFRWS), File Carving Chal-
lenge — DFRWS 2006 (www.dfrws.org/2006/challenge).

[3] Y. Gao, G. Richard IIT and V. Roussev, Bluepipe: An architecture
for on-the-spot digital forensics, International Journal of Digital
FEvidence, vol. 3(1), 2004.

[4] S. Liang, R. Noronha and D. Panda, Swapping to remote mem-
ory over InfiniBand: An approach using a high performance net-
work block device, Proceedings of IEEE International Conference
on Cluster Computing, 2005.

[5] P. Machek, Network Block Device (nbd.sourceforge.net).

G. Richard IIT and V. Roussev, Scalpel: A frugal, high performance
file carver, Proceedings of the Fifth Annual Digital Forensics Re-
search Workshop (www.dfrws.org/2005/proceedings/index.html),
2005.

[7] SourceForge.net, Foremost 1.4 (foremost.sourceforge.net), February
4, 2007.
[8] SourceForge.net, FUSE: Filesystem in Userspace (fuse.sourceforge
.net).
[9] SourceForge.net, The Carve Path Zero-Storage Library and Filesys-
tem (ocfa.sourceforge.net/libcarvpath).
[10] The Linux NTFS Project (www.linux-ntfs.org).
[11] D. Tingstrom, V. Roussev and G. Richard III, dRamDisk: Efficient
RAM sharing on a commodity cluster, Proceedings of the Twenty-

Fifth IEEE International Performance, Computing and Communi-
cations Conference, 2006.

=



