Chapter 25

IN-KERNEL CRYPTOGRAPHIC
EXECUTABLE VERIFICATION

Yusuf Motara and Barry Irwin

Abstract  This paper discusses the problems posed by Trojan horses and unau-
thorized code, and reviews existing solutions for dealing with them. A
technique involving the in-kernel verification of executables is proposed.
Its advantages include simplicity, transparency, ease of use and min-
imal setup time. In addition, the technique has several applications,
including assisting with honeypot implementations, incident response
and forensic investigations.

Keywords: Trojan horse, signed binaries, executable verification, cryptography

1. Introduction

Computer users around the world are continuously bombarded with
viruses, worms and exploits, many of which leave unwanted executable
content on their machines. Current solutions to the problem include
patching, using anti-virus programs or securing systems with firewalls,
all of which are preventative measures [10]. No standard technique ex-
ists to stop a program from executing if it manages to bypass security
controls. This paper describes a technique involving the in-kernel verifi-
cation of executables, which detects unauthorized code and (optionally)
prevents it from executing.

The following section discusses the problems posed by Trojan horses
and unauthorized code, and reviews existing solutions for dealing with
them. Next, the technique involving in-kernel verification of executables
is described in detail. Finally, applications of the technique, including
honeypot implementations, incident response and forensic investigations,
are highlighted.



304 ADVANCES IN DIGITAL FORENSICS

2. Background

This section discusses Trojan horses and unauthorized code, and eval-
uates techniques for guarding against them involving integrity checking,
pre-execution validation and comprehensive security solutions.

2.1 Trojan Horses

A Trojan horse is defined as “a malicious, security-breaking program
that is disguised as something benign” [5]. This paper considers a
broader definition of a Trojan horse to include programs that are nei-
ther malicious nor security-breaking. Examples include “adware” that
piggy-backs on more legitimate programs and anti-piracy programs that
execute whenever certain applications are started. Thus, a Trojan horse
is taken to mean any code on a system that is not explicitly allowed or
expected to be run by the user.

A machine can become the host to a Trojan horse in several ways.

m A user may visit a website that exploits a browser or operating
system flaw on the user’s machine. An example is the Bofra vul-
nerability [14], which only requires a user to click on a link before
executable content is downloaded to the user’s machine.

A use may download a program out of curiosity, leading to a com-
promise, even if the program is supposedly uninstalled later on.

® A user may open and execute an email attachment either uninten-
tionally or because it comes from a trusted source. An example is
the Sober worm [16] that uses social engineering to spread.

= A user may execute the preview, auto-accept or auto-get features
of a program that lead to code execution and a Trojan horse being
deposited on the user’s system.

= An intrusion may leave Trojan horse replicas of important system
utilities. This type of Trojan horse, called a rootkit, installs bi-
naries that mask the compromise and leave a back-door into the
system. Rootkits are freely available for a number of platforms.

= An untutored user might blindly follow instructions on a webpage
that leave a Trojan horse on the system. Many users are deceived
by phishing, which is the practice of using a site that appears legit-
imate to convince users to perform certain actions. For example,
a “bank website” might request a user to download a “security
update” for his computer.



Motara & Irwin 305

Avoiding infection requires that users be certain about the source of a
file and its contents, and that the system be secured and fully patched.
Even these precautions may be insufficient if the user is fooled (e.g., by
phishing) into compromising his own system. Alternatively, an attacker
can take advantage of the time delay between an exploit being created
and a patch being released.

2.2 Unauthorized Code

Unauthorized code is code that should not be running on a system.
Examples include user-created binaries and games on a mail server. The
difference between unauthorized code and a Trojan horse is that the
former is installed on the system with the knowledge of the user while
the latter is not.

Note that many privilege escalation attacks require that binaries be
run by untrusted users with access to normal user privileges. An exam-
ple is the privilege escalation attack that takes advantage of the sudo
utility’s failure to clean the environment [7]. This is an example of
unauthorized code that is malicious and is also likely to be run by script
kiddies on an otherwise secure system. Since there is almost inevitably
a delay between the release of an exploit and the creation (and appli-
cation) of a vendor-supplied patch or workaround, the intervening time
leaves systems vulnerable to compromise. Of course, once a system is
compromised, hiding the compromise using a rootkit is trivial.

2.3 Integrity Checking

Traditionally, guarding against Trojan horses and unauthorized code
has been accomplished using a solution such as Tripwire [13], which takes
“snapshots” of a system. These snapshots include relevant information
about files that makes tampering easy to detect. After a suspected
compromise, or simply as part of a daily security regimen, the integrity
of files on the system is checked against the snapshot. Integrity checkers
have varying levels of sophistication, with some (e.g., mtree [6]) checking
file integrity as a side-effect of their main functionality.

Conventional integrity checkers suffer from the fact that a time lapse
exists between the compromise and the check. This may be exploited
by attackers who can launch further attacks using executables placed
on the compromised machine. Therefore, integrity checkers are only a
partial solution to the problems noted in the discussion of Trojan horses
and unauthorized code (Sections 2.1 and 2.2).

It is also important to note that should a compromise occur, it may
be difficult to verify the integrity of the database used for comparing



306 ADVANCES IN DIGITAL FORENSICS

file characteristics. For this reason, the database should be stored either
offline or on a different (and secure) system.

2.4 Pre-Execution Validation

Validating the integrity of binaries using digital signatures or simple
hashes just before execution eliminates the time lapse problem suffered
by integrity checkers. The following tools may be used to perform pre-
execution validation.

2.4.1 CryptoMark. CryptoMark digitally hashes and signs
an Executable and Linking Format (ELF) binary program, storing the
result within a SHT_NOTE section [3]. It computes an MD5 hash of the
loadable file segments, and checks the hash and signature via a kernel
module whenever the executable is run. Userspace tools are used to
perform and manage the signing of a file.

CryptoMark may be run in a number of configurations. One common
configuration requires all binaries to be signed; unsigned binaries or those
with incorrect signatures are not allowed to run. Another configuration
requires all binaries that run as the superuser to be signed. This allows
users to compile and run their own programs, but denies them the ability
to compile and run binaries that run as the superuser, even if they have
managed to gain superuser access.

2.4.2 WLF.  WLF [4] verifies the integrity of ELF binaries in-
kernel, whereas other techniques (e.g., [2]) verify binaries using modified
interpreters. Key management is stressed by WLF, which makes pro-
vision for using signed binaries from different sources by embedding a
KeyID field in the file signature. WLF can verify a large variety of files
using a plug-in architecture.

2.4.3 TrojanXproof. TrojanXproof [15] verifies the integrity
of ELF binaries using a secured database rather than signing the exe-
cutables themselves. It takes the form of kernel patches for the FreeBSD
and OpenBSD operating systems, and verifies shared libraries and ELF
executables. TrojanXproof does not cryptographically secure files using
digital signatures. Instead, it simply creates MD5 hashes of files and
relies on the security of the database.

2.4.4 DigSig. DigSig [1] uses a kernel module to check the
signatures generated by BSign [11], a tool for signing ELF binaries. All
binaries must be signed correctly in order to run. DigSig caches signa-
tures (also suggested in [2]), which makes the repeated use of commands



Motara & Irwin 307

Table 1. Evaluation of existing solutions.

Name Ease | Executable | Pre-Exec. Active Transprnt.
of Use Checking Validation Developmt. Checking

Tripwire X X X
CryptoMark X X X
WLF X X
TrojanXproof X X X
DigSig X X X X
SELinux X X X

much faster than it would be otherwise. In general, DigSig has most
mature implementation of runtime validation.

2.4.5 Status of Tools. Of the tools described above, only
DigSig appears to be under active development. CryptoMark, a project
of Immunix [8], has disappeared from the vendor’s website. Work on
WLF has ceased, and the code that does exist is quite fragile. TrojanX-
proof is unsupported in most cases.

2.5 Comprehensive Security Solutions

Unauthorized binaries and Trojan horses can be defeated using com-
prehensive security solutions such as SELinux [9], which restrict exe-
cutable access to known valid binaries and ensure fine-grained access
control. Comprehensive security solutions, however, are complex to con-
figure. For example, SELinux policies require an understanding of role-
based access control, type-based enforcement, domains, access vectors
and more. This makes them difficult for the average user to understand
and use, resulting in an increased likelihood of misconfiguration.

2.6 Evaluation of Solutions

Table 1 provides an evaluation of existing solutions. “Ease of use”
is determined by the amount of effort the solution takes to set up and
maintain. “Transparent checking” refers to how transparent the checks
are to the user. The other categories are self-explanatory.

3. Pre-Execution Validation Strategies

This section discusses strategies for pre-execution validation of files
that can secure machines against Trojan horses and unauthorized code.




308 ADVANCES IN DIGITAL FORENSICS

3.1 Basic Strategy

It is important that a system used to verify whether or not tampering
has occurred is itself tamper-proof. In other words, it should not be pos-
sible for an attacker who has gained administrator privileges to subvert
the system. The following two techniques are used for this purpose.

» Digital Signatures: Binaries are digitally signed using a private
key that may be stored offline or protected with a password. Only
properly-signed binaries are allowed to run. Without access to the
private key, an attacker cannot sign his own binaries, preventing
him from running unauthorized executables on the system.

s In-Kernel Verification: Signatures of binaries are verified in-
kernel. A system kernel is one of the hardest components to com-
promise. It cannot (currently) be replaced without a reboot, so
an attacker would have to reboot the machine — something that
a system administrator is likely to notice. Also, the kernel image
may be specific to the machine and, therefore, difficult to replicate.

Creating a custom kernel that contains untrusted code is a non-
trivial task. However, this situation may change with the introduc-
tion of system calls such as kexec in the Linux MM-series kernel
that allows a running kernel to be replaced without rebooting the
system. Such a “feature” should never find its way into a secure
system. To address this issue, machines could boot off CDROMs
or other secure read-only media that contain the kernel and base
system, or they could use a kernel made available over a network.
Alternatively, a kernel checksum could be placed on another ma-
chine, or the kernel could be cryptographically signed, and these
could be checked during booting. These measures make compro-
mising the kernel difficult, if not impossible.

Although we use the term “signing binaries” in this paper, note that
that both binaries and libraries must be digitally signed. Signing ideally
occurs by sending the binary to a trusted party who examines it byte-
for-byte against a known good copy, and signs it if it matches. This
process can be automated quite easily, using a web service or remote
procedure call (RPC) variant that signs binaries.

To simplify the discussion, we consider the case of having one “cor-
rect” signature rather than a number of possible signatures. The tech-
niques described below are easily adapted to handling more than one
signature.

Signature revocation must be taken into account in all designs. Re-
vocation occurs if an application is found to be exploitable or otherwise



Motara & Irwin 309

unsuitable for use on a system. In the absence of revocation, an attacker
who has saved an earlier signed version of the exploitable file could use it
to replace the current version, opening up a security hole in the system.
It should not be possible to remove signatures from a list of revoked
signatures, nor should it be possible to add signatures to the list im-
properly. The former may lead to a compromise; the latter to denial of
service as legitimate programs would be prevented from executing.

3.2 In-Binary Signatures

An ELF object file has a number of sections, some which are loaded
into memory at runtime and some which are not. Sections that hold
vendor-specific information are of type SHT_NOTE, and are not loaded
into memory to form the executable image at runtime [12]. An ELF
binary may have its signature stored in a specially-crafted SHT NOTE
section.

The advantage of this approach is that a binary and its signature are
linked through one file; there is no need to have separate storage for the
signature, which simplifies verification. Since SHT_NOTE sections are
not loaded to form an executable image, the behavior of the executable
is the same as if the section did not exist at all. This means that signed
binaries are just as portable as unsigned binaries.

Signature revocation is problematic as there is no good way to keep
track of a list of revoked signatures. The revoked signatures cannot be
kept within the file as this would not get around the problem of file
replacement. Also, the need to maintain a separate database that must
be kept with the files removes the benefit of having a single storage
site for signatures. In addition, the database grows as signatures are
revoked; checking every signature against an ever-increasing “revoked”
list does not scale well. Another drawback is that only ELF binaries
may be checked; Python scripts, for example, do not have SHT_ NOTE
sections.

3.3 External Signatures

Keeping signatures separate from executable files means that two files
—the binary itself and the signature database — must be opened whenever
a binary (executable or library) is run. The database is secured by
signing it with a private key; the file hashes within the database need
not be encrypted individually. Signing is implemented by sending the
executable and the database to a third party. The third party verifies
the file, unlocks the database, adds the new signature or replaces the old
one, and returns only the database.



310 ADVANCES IN DIGITAL FORENSICS

One advantage of this approach is that any executable, not just ELF
files, can be checked. Meta-information about the file (e.g., user/group
ownership) can be stored and checked along with the signature for added
security. Revocation is not an issue as replacing a file with a previous
version is the same as having a file with an invalid signature; therefore, no
special revocation check needs to be done. To ensure that the database
is not replaced by an earlier version, it is necessary to maintain a version
number in-kernel and in the database, or to have the database located
on secure read-only media (e.g., locked flash memory). The database
itself can be secured in a number of ways, as it is only one file rather
than hundreds of binaries.

A disadvantage of this approach is that opening and checking two files
upon every execution is slower than simply dealing with one file.

3.4 Caching

Validating an executable file before execution leads to an inevitable
delay at program startup. While the delay may not be noticeable for
a large executable, e.g., a word-processing program or a web browser,
it can be quite significant for small system utilities such as 1s or grep.
The problem can be ameliorated by caching signatures, especially in the
case of external signatures.

A signature cache should be invalidated after writing to a file, re-
moving a file from a directory hierarchy, and rebooting. In addition,
networked files to which writes cannot be reliably detected should never
have their signatures cached. This approach to caching is taken by
DigSig, which has contributed to significant increases in speed [1]. In
contrast, CryptoMark does no caching [3]; it was removed from public
distribution in 2004 due to sluggish performance.

3.5 Limitations

Performance limitations are significant in the case of networked file
systems. As indicated in Section 3.4, it is difficult to maintain good
performance without caching. Cached signatures are valid only when a
kernel can record accesses to a file system. Since this is not possible for
networked file systems, signature caching cannot be employed.

This approach is intended to increase system security; it is not a com-
prehensive security solution, e.g., SELinux. Nevertheless, the approach
has several advantages, including transparency, ease of use and minimal
setup time, all of which contribute to ease of deployment across ma-
chines intended for very different purposes. However, the trade-off is



Motara & Irwin 311

that customization and the benefits of a comprehensive, flexible security
policy are lost.

Of course, all security is lost if the kernel or the third party who
holds the private key are compromised. As discussed in Section 3.1,
several techniques exist for securing the kernel. Securing the third party
is outside the scope of this work.

4. Digital Forensics

Of course, denying an executable permission to run is simply one re-
sponse to an invalid or nonexistent signature. Several other options are
possible — from logging the behavior of the executable to notifying the
system administrator. The proposed technique can be used in a honey-
pot implementation to log executable files that do not have signatures,
make backup copies of them and maintain records of their behavior. It
can also be used in conjunction with a network traffic logger to record
the behavior of certain exploits “in the wild” for later analysis, for in-
put to an intrusion detection system (IDS) or as evidence of malicious
activity.

In the case of a suspected intrusion, system tools can be limited to
a known good set by disallowing the execution of all unsigned binaries.
In this state the system can be checked for a compromise. While other
methods exist for locking down a system, the benefits of this approach
are that it allows read-write access to the system and ensures the in-
tegrity of the tools used for analysis. The system can be locked down as
soon as suspicious behavior is noted by an intrusion detection system.
If a production web server is compromised at night or on a weekend, the
lockdown strategy ensures that the server continues to operate while the
threat of further compromise is mitigated and unsigned executables are
stored in a safe location for further analysis.

5. Conclusions

The focus of this work is protecting systems from Trojan horses and
unauthorized code. However, the approach has several other applica-
tions, including assisting with honeypot implementations, incident re-
sponse and forensic investigations. Other variations, such as only al-
lowing signed binaries to be executed in a superuser context, are also
possible.

The approach is intended to increase system security; it is not a com-
prehensive security solution, e.g., SELinux. Nevertheless, the approach
has several advantages, including simplicity, transparency, ease of use
and minimal setup time.



312 ADVANCES IN DIGITAL FORENSICS

References

[1] A. Apvrille, D. Gordon, S. Hallyn, M. Pourzandi and V. Roy, The
DigSig Project, LinuzWorld Magazine, vol 2(1), December 22, 2003.

[2] W. Arbaugh, G. Ballintijn and L. van Doorn, Signed executables
for Linux, Technical Report CS-TR-4259, University of Maryland,
College Park, Maryland, 2001.

[3] S. Beattie, A. Black, C. Cowan, C. Pu and L. P. Yang, CryptoMark:
Locking the stable door ahead of the Trojan horse, Technical Report,
WireX Communications Inc., Portland, Oregon, 2000.

[4] L. Catuogno and I. Visconti, A format-independent architecture for
run-time integrity checking of executable code, in Security in Com-
munication Networks, Lecture Notes in Computer Science, Volume
2576, S. Cimato, C. Galdi and G. Persiano (Eds.), Springer, Berlin-
Heidelberg, pp. 219-233, 2003.

[5] FOLDOC, Trojan horse, FOLDOC: The Free On-Line Dictionary
of Computing (www.foldoc.org/foldoc/foldoc.cgi?query=Trojan+
Horse&action=Search).

[6] FreeBSD, mtree(8), FreeBSD 5.3 System Manager’s Manual, Jan-
uary 11, 2004.

[7] L. Helmer, Sudo environment cleaning privilege escalation vulnera-
bility (secunia.com/advisories/13199).

[8] Immunix Inc. (www.immunix.org).

[9] National Security Agency, Security-Enhanced Linux (www.nsa.gov
/selinux).

[10] B. Paul, Evaluation of Security Risks Associated with Networked
Information Systems, Master’s Thesis, School of Business Adminis-
tration, Royal Melbourne Institute of Technology, Melbourne, Aus-
tralia, 2001.

[11] M. Singer, bsign(1), The Debian Project (packages.debian.org
/testing/admin/bsign), 2001.

[12] Tool Interface Standards Committee, Executable and Linkable For-
mat (ELF), Technical Report, Unix System Laboratories, Summit,
New Jersey, 2001.

[13] Tripwire Inc., Tripwire for servers datasheet, Technical Report,
Tripwire, Inc., Portland, Oregon (www.tripwire.com/files/literature
/product_info/Tripwire_for_Servers.pdf), 2005.

[14] B. Wever and ned, Microsoft Internet Explorer malformed IFRAME
remote buffer overflow vulnerability (securityresponse.symantec.com
/avcenter /security /Content/11515.html).



Motara & Irwin 313

[15] M. Williams, Anti-Trojan and Trojan detection with in-kernel dig-
ital signature testing of executables, Technical Report, NetXSecure
NZ Limited, Canterbury, New Zealand, 2002.

[16] C. Wueest, W32.Sober.I@mm (sarc.com/avcenter/venc/data/w32.
sober.i@mm.html).



