DECIDABILITY OF OPACITY WITH NON-ATOMIC KEYS

Laurent Mazaré
VERIMAG
Centre Équation, 2 av de Vignates
38610 GIÈRES FRANCE
laurent.mazare@imag.fr

Abstract The most studied property, secrecy, is not always sufficient to prove the security of a protocol. Other properties such as anonymity, privacy or opacity could be useful. Here, we use a simple definition of opacity which works by looking at the possible traces of the protocol using a new property over messages called similarity. The opacity property becomes a logical constraint involving both similarities and syntactic equalities. The main theorem proves that satisfiability of these constraints and thus opacity are decidable without having to make the hypothesis of atomic keys. Moreover, we use syntactic equalities to model some deductions an intruder could make by performing bit-to-bit comparisons (i.e. known-ciphertext attack).

Keywords: Opacity, Security, Formal Verification, Dolev-Yao Constraints, Rewriting Systems, Decidability.

The full version of this paper (including proofs) is available at http://www-verimag.imag.fr/~lmazare/FAST04.pdf.

1. Introduction

During the last decade, verification of security protocols has been widely investigated. The majority of the studies focussed on demonstrating secrecy properties using formal methods (see for example [Clarke et al., 1998], [Comon-Lundh and Cortier, 2003], [Comon-Lundh and Cortier, 2002] or [Goubault-Larrecq, 2000]). These methods have lead to effective algorithms and so to concrete tools for verifying secrecy such as these proposed by the EVA project [Bozga et al., 2002] or the Avispa project [Avispa, 1999]. However, checking security protocols requires studying other properties such as anonymity or opacity: hiding a piece of information from an intruder. For example, in a voting protocol,
whereas the intruder is able to infer the possible values of the vote (yes or no), it should be impossible for him to guess which vote was expressed, only by observing a session of this protocol. Checking a protocol should include a way of formalizing the informations that were leaked and that the intruder can guess. In the last few years, attempts have been made to properly define opacity properties, to prove their decidability in certain cases and to propose some verification algorithms. As far as we know, other versions of opacity ([Boisseau, 2003], [Hughes and Shmatikov, 2004]) have been given in the literature but none of these criterion were implemented. Our notion of opacity is very close to the one introduced in [Hughes and Shmatikov, 2004] except that we use a formalism dedicated to protocols studies when they use a more general functional approach.

In this paper, we adopt a simple definition for opacity. The intruder C has a passive view of a protocol session involving two agents A and B. He is able to read any exchanged messages but he cannot modify, block or create a message. A property will be called opaque if there are two possible sessions of the protocol such that: in one of these, the property is true whereas it is not in the other, and it is impossible for the intruder to differentiate the messages from these two sessions from the messages exchanged in the original session. The starting point is the notion of similarity. This binary relation noted \sim is an equivalence relation between messages. Two messages are similar if it is not feasible for the intruder to differentiate them. A typical example is two different messages encoded by a key that the intruder cannot infer. From the point of view of the intruder, these messages will be said similar. This notion is of course dependent of the knowledge of the intruder given by Dolev-Yao theory [Dolev and Yao, 1983]: if the intruder is able to infer any of the used keys, then similarity will be equivalent to syntactic equality. This notion of similarity will allow us to express opacity properties as constraints. These constraints will also include syntactic equality. Equalities are used to show that the intruder can perform bit-to-bit comparisons between some messages (this is best known in the literature as known-ciphertext attacks). Let us give a simple example that will be useful throughout this paper. A simple electronic voting protocol is given by the transmission between A (the voter) and S (the authority counting votes). Variable v is the expressed vote chosen among the possible values yes or no.

\[A \rightarrow S : \{v\}_{pub(S)} \]

If the intruder intercepts the value of $\{v\}_{pub(S)}$, then as he can compare it to $\{yes\}_{pub(S)}$ and $\{no\}_{pub(S)}$, the intruder is able to deduce the value
of \(v \). We will say that the intruder performed a bit-to-bit comparison between \(\{v\}_{\text{pub}(S)} \) and \(\{\text{yes}\}_{\text{pub}(S)} \) (or \(\{\text{no}\}_{\text{pub}(S)} \)).

The aim of this paper is to formalize opacity as two constraints involving similarities and equalities taking into account possible bit-to-bit comparisons. The main result is decidability of satisfiability for such constraints using a finite-model property.

The remainder of this paper is organized as follows. In section 2, we recall usual definition for messages and protocols. Similarity over messages is introduced in section 3 and some useful properties are given. This section also formalizes the opacity property and translates it to a constraint. Both section 2 and 3 are very close to sections appearing in [Mazaré, 2004], they give the necessary basis to formalize the following sections. Then, section 4 proves that satisfiability for such constraints is decidable. Section 5 introduces the bit-to-bit comparisons in our constraints. Eventually, section 6 shows how to use this technique on a simple example, and section 7 concludes this paper.

2. Cryptographic Protocols

Let \(\text{Atoms} \) and \(X \) be two infinite countable disjoint sets. \(\text{Atoms} \) is the set of atomic messages \(a, b, \ldots \). Set \(X \) contains variables called “protocol variables” \(x, y, \ldots \).

Definition 1 (Message) Let \(\Sigma \) be the signature \(\text{Atoms} \cup \{\text{pair}, \text{encrypt}\} \) where \(\text{pair} \) and \(\text{encrypt} \) are two binary functions. The atomic messages are considered constant functions. Then a message is a first order term over \(\Sigma \) and the set of variables \(X \), namely an element of \(T(\Sigma, X) \). A message is said to be closed if it is a closed term of \(T(\Sigma, X) \), i.e. a term of \(T(\Sigma) \).

In the rest of this paper, we will use the following notations:

\[
\langle m_1, m_2 \rangle = \text{pair}(m_1, m_2) \quad \{m_1\}_{m_2} = \text{encrypt}(m_1, m_2)
\]

Height of message \(m \) can be easily defined recursively and will be noted \(|m| \). Substitutions \(\sigma \) from \(X \) to \(T(\Sigma, X) \) are defined as usual. Application of substitution \(\sigma \) to message \(m \) will be noted \(m\sigma \). If \(\sigma \) is defined by \(x\sigma = n \) and \(y\sigma = y \) for any other variable \(y \), then we could write \(m[x\backslash n] \) instead of \(m\sigma \). The domain of a substitution \(\sigma \) is the set \(\text{dom}(\sigma) \) of variables \(x \) such that \(x\sigma \neq x \).

The set of variables used in a message \(m \) is noted \(\text{var}(m) \) (or \(\text{free}(m) \)).

Definition 2 (Protocol) Let \(\text{Actors} \) be a finite set of participants called actors. The set of programs \(\text{Progs} \) is given by the following
syntax where \(B \) is in \textit{Actors}, \(m_1, m_2 \) and \(m \) are messages.

\[
G \ ::= \ \epsilon \ | \ !Bm.G \ | \ ?m.G \ | \ if \ m_1 = m_2 \ then \ G \ else \ G \ fi
\]

A protocol over the set of actors \textit{Actors} is a function from \textit{Actors} to \textit{Progs} associating a program to each actor.

The intuitive semantic of programs is the usual one: signification of \(!Bm \) is to send the message \(m \) to agent \(B \), signification of \(?m \) is to receive a message and using pattern matching, to replace the variables learnt from \(m \) in the rest of the program.

For the following, the set of actors is fixed to \textit{Actors}. Let \textit{free} be the function giving free variables of a program. It is easy to define \textit{free} in the usual recursive way. Then, \textit{free} can be extended over protocols. An instance of the protocol \(P \) is a protocol \(P\sigma \) where \(\sigma \) instantiates exactly the free variables of \(P \) with closed messages. For that purpose, it is possible to rename every bound variable with a fresh variable such that bound variables are distinct and not in the free variables set. The substitution \(\sigma \) is called a session of the protocol \(P \). When there is no risk of confusion on the protocol, its name will be omitted. Thus, we will talk about a session \(\sigma \).

\textbf{Definition 3 (Protocol Semantic)} The semantic of a protocol is the transition system over protocols defined by the following rules:

- If \(m \) is a closed message and \(\sigma \) is the most general unifier of \(m \) and \(m' \) (\(m' \) is called the proto-message of \(m \)),

\[
\frac{Prog(A) = !Bm.P_A \quad Prog(B) = ?m'.P_B}{Prog \xrightarrow{m} Prog[A \to P_A; B \to P_B]_\sigma}
\]

Note that, if \(\sigma \) does not exist, the protocol can be blocked. The transition is from the protocol \(Prog \) to the protocol \(Prog[A \to P_A; B \to P_B] \), i.e. the protocol linking \(A \) to program \(P_A \), \(B \) to program \(P_B \) and other actors \(D \) to program \(Prog(D) \).

- If \(m_1 \) and \(m_2 \) are the same closed message,

\[
\frac{Prog(A) = \text{if} \ m_1 = m_2 \ then \ P_A \ else \ G \ fi}{Prog \to Prog[A \to P_A]}
\]

- If \(m_1 \) and \(m_2 \) are two distinct closed messages,

\[
\frac{Prog(A) = \text{if} \ m_1 = m_2 \ then \ G \ else \ P_A \ fi}{Prog \to Prog[A \to P_A]}
\]
A protocol P terminates iff for any Q such that $P \rightarrow^* Q$, it is possible to reach the state $\epsilon: Q \rightarrow^* \epsilon$. Note that only closed protocols could terminate. A run of a session σ for a protocol P is an ordered set of messages $r = r_1.r_2...r_n$ such that

$$P\sigma \rightarrow^*_r \epsilon$$

A protocol session is deterministic if it has exactly only one possible run. This run will be noted $\text{run}(P\sigma)$. In the following sections, protocols will always be considered deterministic, i.e. each of their sessions is deterministic.

Eventually, to simplify notations, instead of writing:

$$\text{Prog}(A) = !S\{v\}_{pub(S)} \quad \text{Prog}(S) = ?\{v\}_{pub(S)}$$

We will shorten this to: $A \rightarrow S : \{v\}_{pub(S)}$.

This paper will make an extensive use of Dolev-Yao theory [Dolev and Yao, 1983]. Let E be a set of messages and m be a message, then we will note $E \vdash m$ if m is deducible from E using Dolev-Yao inferences.

3. Similarity and Opacity

3.1 Similarity

The intuitive definition of opacity is that an intruder is not able to distinguish a run where the property is satisfied from a run where it is not. To distinguish two messages, the intruder can decompose them, according to his knowledge but if he does not know the key k for example, he will not be able to make the difference between two different messages encoded by this key k. Two such messages will be called similar messages. This definition will be formalized using inference rules.

An environment is a finite set of closed messages. Usually, it will denote the set of messages known by the intruder. This definition will suppose that we only use symmetric key cryptography. However, all the following results can easily be generalized to public key cryptography.

Definition 4 (Similar Messages) Two closed messages m_1 and m_2 are said to be similar for the environment env iff $env \vdash m_1 \sim m_2$ where \sim is the smallest (w.r.t set inclusion) binary relation satisfying:

\[
\begin{align*}
&\sigma \in \text{Atoms} \\
&\sigma = v \rightarrow^* \epsilon \\
&\epsilon_k \vdash \langle u_1, v_1 \rangle \sim \langle u_2, v_2 \rangle \\
&\sim_k \vdash \langle u_3, v_3 \rangle \sim \langle u_4, v_4 \rangle
\end{align*}
\]

Intuitively, this means that an intruder with the knowledge env will not be able to distinguish two similar messages. The environment name will be omitted as soon as it is not relevant for comprehension. Our
definition of \(\sim \) is very closed to the \(\equiv \) operator introduced by Abadi and Rogaway in [Abadi and Rogaway, 2000], except that we have an explicit environment to tell which keys are compromised instead of using directly the messages linked by the \(\equiv \) operator.

Moreover, the definition of \(\sim \) could easily be extended to non-closed environments and messages by adding the inference: \(\frac{x \in X}{x \sim x} \). This can also be achieved by defining \(m \sim n \) for non-closed messages as \(m\sigma \sim n\sigma \) for each \(\sigma \) such that \(m\sigma \) and \(n\sigma \) are closed.

Property 1 The binary relation \(\sim \) is an equivalence relation: let \(m_1 \), \(m_2 \) and \(m_3 \) be three messages.

\[
\begin{align*}
 m_1 \sim m_1 & \quad m_1 \sim m_2 \Rightarrow m_2 \sim m_1 \\
 m_1 \sim m_2 \land m_2 \sim m_3 \Rightarrow m_1 \sim m_3
\end{align*}
\]

To prove that the \(\sim \) relation is compatible with the context operation, we will have to suppose that only atomic keys are allowed. This hypothesis is only required for the following property.

Property 2 (Context) Let \(m_1 \), \(m_2 \), \(m_3 \) and \(m_4 \) be four messages. If \(m_3 \) and \(m_4 \) have only one free variable \(x \),

\[
m_1 \sim m_2 \land m_3 \sim m_4 \Rightarrow m_3[x\backslash m_1] \sim m_4[x\backslash m_2]
\]

And in particular,

\[
m_1 \sim m_2 \Rightarrow m_3[x\backslash m_1] \sim m_3[x\backslash m_2]
\]

Let \(m \) and \(n \) be two messages and \(x \) a variable. Let \(\sigma \) be a substitution such that \(x\sigma \sim n\sigma \). Then

\[
m\sigma \sim m[x\backslash n]\sigma
\]

When considering similarity, an important problem is: given an environment \(env \) and a closed message \(m \), what is the set of closed message \(n \) such that

\[
env \vdash n \text{ and } env \vdash m \sim n
\]

Note that the main difficulty is that we do not necessarily have \(env \vdash m \).

For that purpose, the \textit{fresh} function will be introduced. It is inductively defined over messages by the following equalities where all the variables \(y \) have to be instantiated with different fresh variables (i.e. variables that do not appear anywhere else).

\[
fresh(a) = a
\]
\[
\begin{align*}
\text{fresh}(x) &= x \\
\text{fresh}(⟨m, m'⟩) &= \langle\text{fresh}(m), \text{fresh}(m')⟩ \\
\text{fresh}(\{m\}_k) &= \{\text{fresh}(m)\}_k \text{ if } env \vdash k \\
\text{fresh}(\{m\}_k) &= \{y\}_k \text{ if } env \not\vdash k, \ y \text{ is a fresh variable}
\end{align*}
\]

Property 3 For every substitution \(\sigma\), we have

\[
m\sigma \sim \text{fresh}(m)\sigma
\]

The reciprocal of this property is that if \(m\) is similar to \(n\), then \(n\) is an instance of \(\text{fresh}(m)\), i.e. \(\text{fresh}(m)\) where all free variables are instantiated by closed messages.

Property 4 Let \(m\) and \(n\) be two closed messages. If \(m \sim n\), then there exists a substitution \(\sigma\) that acts over the free variables of \(\text{fresh}(m)\) such that \(n = \text{fresh}(m)\sigma\).

3.2 The Opacity Problem

Let us consider a protocol \(PR\) and one of its session \(\sigma\). We will be interested in predicates over \(\sigma\), namely properties \(\psi\) that act over variables instantiated by \(\sigma\). Such properties may express the identity of an agent, or the value of a vote, for instance. The opacity problem considered here relies on several hypothesis:

- The intruder \(C\) has a passive view of protocol session \(\sigma\) involving two agents \(A\) and \(B\). Passive means that the intruder can intercept and view any messages exchanged by \(A\) and \(B\) but is not able to block, modify nor to send any message.
- The intruder knows the protocol used \(PR\).
- The intruder has an initial knowledge \(c_0\), which is a predicate (for example, \(c_0 = (k_1 = k_2)\) means that \(C\) knows that the keys that will instantiate \(k_1\) and \(k_2\) are the same).

If we consider the witness run \(\text{run}(P\sigma) = m_1, m_2, ..., m_n\), property \(\psi\) will be opaque if there exist two possible sessions \(\sigma_1\) and \(\sigma_2\) of the protocol giving messages similar to the witness messages \((m_1 \text{ to } m_n)\) where for example, \(\psi\sigma_1\) is true and \(\psi\sigma_2\) is false. In this case, the intruder will not be able to deduce any knowledge on \(\psi\sigma\). Of course, there is no need to find both \(\sigma_1\) and \(\sigma_2\): if \(\psi\sigma\) is true, then we could use \(\sigma\) instead of \(\sigma_1\), as exchanged messages are the same, they are similar. But we will
keep this notation with three substitutions to show the symmetry of this problem.

Definition 5 (Opacity) A property \(\psi \) is said to be opaque for a protocol session \(\sigma \) of \(P \) iff there exist two sessions of the protocol \(\sigma_1 \) and \(\sigma_2 \) such that

\[
\begin{align*}
\alpha_0 \sigma_1 & \wedge p_1 \sim m_1 \wedge \ldots \wedge p_n \sim m_n \wedge \psi \sigma_1 \\
\alpha_0 \sigma_2 & \wedge q_1 \sim m_1 \wedge \ldots \wedge q_n \sim m_n \wedge \neg \psi \sigma_2
\end{align*}
\]

Where \(p_1,p_2\ldots p_n \) is the run of the protocol \(P \) related to \(\sigma_1 \), \(q_1,q_2\ldots q_n \) is related to \(\sigma_2 \) and \(m_1,m_2\ldots m_n \) is related to \(\sigma \). Note that the three runs must have the same length \(n \).

The environment \(env \) used in the previous conjunctions is \(\{m_1,\ldots,m_n,\)
\(p_1,\ldots,p_n,q_1,\ldots,q_n\} \) and could be augmented with an initial knowledge of the intruder \(env_0 \).

We defined opacity for a protocol session, this can be extended to protocols by saying that a property is opaque in a protocol if it is opaque for all its session. The problem is that the number of possible sessions (and their size) is unbounded. This leads to an unbounded number of possible behaviors for a protocol. In the following, we give a method to check opacity for a given session but we lack the method to extend it to a whole protocol.

For instance, let us consider the simple electronic voting protocol. Suppose that the session observed by the intruder is \(\sigma = [v\:\{yes\}] \). Then, the environment will be \(env = \{yes,\:no,\:pub(S),\:{yes}_{\:pub(S)}\} \). The predicates expressing the opacity of the vote value will be:

\[
\begin{align*}
\{v\}_{\:pub(S)} & \sim \{yes\}_{\:pub(S)} \wedge v = yes \\
\{v\}_{\:pub(S)} & \sim \{yes\}_{\:pub(S)} \wedge \neg v = yes
\end{align*}
\]

As both predicates are satisfiable, the vote value is opaque in this case.

Our property of opacity can also be used to check anonymity. For example, if we take a definition of anonymity closed to the one given in [Schneider and Sidiropoulos, 1996], we just have to add a “restricted view” for the intruder, i.e. the intruder only intercepts some of the exchanged messages (for example, when considering a system with both secure and insecure channels). Then, opacity for property “identity of such actor” will be similar to what is defined as anonymity.

4. Initial Predicates and Satisfiability

In this section, the environment \(env \) is a finite set of closed messages. We will first define a class of predicates called initial predicates. Then, we will show that satisfiability for such predicates is decidable.
Definition 6 (Initial Predicates) The set IP of initial predicates is given by the following formulas:

$$P ::= P_A \land P$$

$$P_A ::= m \sim n | m = n | \bot | \top$$

Where m and n are two messages.

Theorem 1 Satisfiability of initial predicates is decidable.

Proof 1 Due to space limitation, the proof cannot be given here, but is available in the full version of this paper.

5. Syntactic Equality

The addition of syntactic equality in predicates will be used to model the intruder performing bit-to-bit comparison between two deducible messages. For example, if the intruder has intercepted $\{v\}_{pub(s)}$ and has a bit-to-bit value equal to $\{yes\}_{pub(s)}$, then he can deduce that the value of v is yes. Two such messages will be called identifiable messages. We will show in this section that the knowledge brought by identifiable messages is computable. A kind of attack close to this one has already been studied with different techniques under the name of guessing attacks in [Lowe, 2002], [Gong et al., 1993] or [Delaune, 2003].

But these studies do not precisely link the values to the proto-messages as will be done here. In the previous section, we used the Dolev-Yao model: the only way to obtain some information from a ciphertext was to find the right key and to decode it. Here, we use a model where the intruder has stronger deduction capacities. This hypothesis holds for some encryption schemes but most of them use random bits so that these attacks are impossible to perform.

Definition 7 Let $M = \{m_1, ..., m_n\}$ be a finite set of messages and σ be a substitution such that $M \sigma$ is closed. We define \vdash_σ as follows.

\[\begin{align*}
M \vdash_\sigma m_1 & \quad (1) \\
M \vdash_\sigma m_2 & \quad (2) \\
M \vdash_\sigma m_3 & \quad (3) \\
M \vdash_\sigma (m, n) & \quad (4) \\
M \vdash_\sigma (m_2, n) & \quad (5) \\
M \vdash_\sigma (m_2) & \quad (6)
\end{align*}\]

The meaning of $M \vdash_\sigma m$ is that an intruder knowing M and looking at $M \sigma$ can link the prototype m to its value $m \sigma$. The intruder can add to its knowledge $m = m \sigma$ but is not allowed to decompose m and $m \sigma$ as soon as some keys could be not deducible. But, if the intruder can find two times the same message linked to two different prototypes m and n, then he will be able to deduce the syntactic equality $m = n$.

Decidability Of Opacity With Non-Atomic Keys
Note that $M \vdash_{\sigma} m$ implies $M_{\sigma} \vdash m_{\sigma}$. The inverse is of course false (take for example $m = x$, $M = \{ y \}$ and $x_{\sigma} \neq y_{\sigma} = a$). First, we will prove a general property on our new theory: its locality.

Property 5 (Locality) The theory \vdash_{σ} is local: if $M \vdash_{\sigma} m$, then there exists a proof of $M \vdash_{\sigma} m$ such that for any intermediate occurrence of $M \vdash_{\sigma} m'$ in the proof, m' is either a sub-message of m, or a sub-message of a message present in M.

A direct application of this property is that if the last rule used in a minimal proof of $M \vdash_{\sigma} m$ is a decomposition, then m is a sub-message of a message of M.

Definition 8 (Identifiable Messages) Two messages m and n are said to be identifiable for σ and M iff

- $m \neq n$
- $M \vdash_{\sigma} m$ and $M \vdash_{\sigma} n$
- $m_{\sigma} = n_{\sigma}$

m and n are minimal iff there does not exist a non initial position p such that m_{σ} and n_{σ} are identifiable (m_{σ} is the sub-term of m occurring at position p).

If two messages m and n are identifiable, then the intruder can add $m = n$ to its knowledge. Now, we want to be able to add all the knowledge that can be inferred to the intruder’s knowledge without testing any possible couple of messages. We want to show that this knowledge is computable in a finite time. For that purpose, we will state two distinct properties.

Property 6 The set of minimal identifiable messages is computable.

To prove this property, we will have to use the locality of our theory. This property will lead us to a decision algorithm capable of producing every possible pair of minimal identifiable messages. Let m and n be two minimal identifiable messages. Consider minimal proofs for $M \vdash_{\sigma} m$ and $M \vdash_{\sigma} n$, using the symmetry between m and n, only three combinations of final rules for $M \vdash_{\sigma} m$ and $M \vdash_{\sigma} n$ are possible.

- These rules are both 2 or 3: then either $m = \langle m_1, m_2 \rangle$ and $n = \langle n_1, n_2 \rangle$, either $m = \{m_1\}_{m_2}$ and $n = \{n_1\}_{n_2}$. Let us consider the case of pairs. As we have $m \neq n$, we have $m_1 \neq n_1$ or $m_2 \neq n_2$. To fix the idea, we will consider $m_1 \neq n_1$. We have, of course,
\[m_1 \sigma = n_1 \sigma \text{ and } M \vdash_\sigma m_1 \text{ and } M \vdash_\sigma n_1. \] So \(m_1 \) and \(n_1 \) are identifiable, there is a contradiction with the minimality of the pair \(m, n \). That is why, these rules cannot occur at the end of minimal proofs.

- If both rules are in 1, 4, 5 and 6. Then \(m \) and \(n \) are sub-messages from \(M \). These messages are only in finite number.

- If the rule concerning \(m \) is in 1, 4, 5 and 6 and the rule concerning \(n \) is in 2 and 3. Then \(m \) is a sub-message of \(M \). As \(m \sigma = n \sigma \), we have \(n \sigma \) in \(SM(M \sigma) \) (sub-messages, i.e. sub-terms of \(M \sigma \)). So we have

\[
|n \sigma| \leq \max(|p|, p \in SM(M \sigma))
\]

And we obtain a bound of the length of \(n \):

\[
|n| \leq \max(|p|, p \in SM(M \sigma))
\]

The atoms occurring in \(n \) have to occur in \(M \) and the variables occurring in \(n \) have to be instantiated by \(\sigma \). So there are only a finite number of possible messages for \(n \).

To find all the minimal similar messages, we have to test all the messages whose lengths are below \(\max(|p|, p \in SM(M \sigma)) \). Messages from \(SM(M) \) are in that set. These messages can only use atoms used in \(M \) and variables instantiated by \(\sigma \). That is why the set of messages to be tested is finite. Moreover, checking that two messages are identifiable and minimal can be done in a finite time too, and so all the minimal identifiable messages can be found in a finite time.

Property 7 If \(m \) and \(n \) are identifiable and \(p_1, \ldots, p_k \) are the positions such that \(m|_{p_1} \) and \(n|_{p_1} \) are identifiable and minimal, then for any model \(\sigma \),

\[
\sigma \models (m = n \iff m|_{p_1} = n|_{p_1} \land \ldots \land m|_{p_k} = n|_{p_k})
\]

Using properties stated in this section, we now have a method to model what an intruder can guess using bit-to-bit comparisons. Our method is easy to apply but inefficient as it tests any couple of message whose lengths are below a fixed bound. It produces constraints of the form \(m = n \), they can be added to the opacity predicates. As we show in the previous section, satisfiability of the resulting predicates will remain decidable. More formally, \(M \) will be the awaited trace of the protocol in terms of proto-messages augmented with the initial knowledge of the intruder and \(env \) will be the set of intercepted messages as long as the initial knowledge, so we will usually take \(env = M \sigma \). Then, opacity of
a property P will be checked as satisfiability of to predicates $S \land P$ and $S \land \neg P$ where S contains similarities that occur in the opacity constraint. We will have to compute the set of minimal identifiable messages m_1, n_1 to m_k, n_k. This gives use another predicate E defined by:

$$E = (m_1 = n_1 \land ... \land m_k = n_k)$$

And so, we will study satisfiability of two predicates: $E \land S \land P$ and $E \land S \land \neg P$. This will be applied in the next section on two very simple electronic voting protocols.

6.1 Simple Does Not Mean Secure

Let us consider the most simple electronic voting protocol. A is the voter and S the authority that will count the different votes. The possible votes are yes and no. Of course, one of the objective is that the expressed vote remains opaque. In a first version, the vote will just be sent from A to S encoded using the public key of S. The protocols is written:

$$A \rightarrow S : \{v\}_{pub(S)}$$

Where v is chosen among the values yes and no. Let us suppose that the expressed vote is yes, so the substitution σ is defined by $\sigma = [v \backslash yes]$. Then M is the set $\{\{v\}_{pub(S)}, yes, no, pub(S)\}$. The environment env is the set $M \sigma$. The value of $max(|p|, p \in SM(M \sigma))$ is 2 ($pub(S)$ is considered as an atomic message). We easily obtain the set of minimal identifiable messages:

$$\{(\{v\}_{pub(S)}, \{yes\}_{pub(S)})\}$$

So $E = (\{v\}_{pub(S)} = \{yes\}_{pub(S)})$, the constraints of opacity related to the value of v are:

$$\{v\}_{pub(S)} = \{yes\}_{pub(S)} \land \{v\}_{pub(S)} \sim \{yes\}_{pub(S)} \land v = yes$$

$$\{v\}_{pub(S)} = \{yes\}_{pub(S)} \land \{v\}_{pub(S)} \sim \{yes\}_{pub(S)} \land v = no$$

By using our rewriting system on the second predicate, we have

$$v = yes \land \{v\}_{pub(S)} \sim \{yes\}_{pub(S)} \land v = no$$

And so this constraint can be rewriten to 1, the second constraint is not satisfiable. The value of v is not opaque: the intruder can guess the vote. Intuitively, we already shew how the intruder could guess the vote in the introdution. Now, we want to fix this opacity flaw by modifying the protocol.
6.2 Adding Complexity

The technique used by the intruder is to guess which message can be encrypted and to compare the result with the intercepted message. As we do not want the intruder to guess which message can be encrypted, we add a nonce in the protocol:

\[A \rightarrow S : \{ \langle v, n \rangle \}_{pub(S)} \]

As in the previous example, let us suppose that the expressed vote is \textit{yes} and the nonce is instantiated by a fresh atom \(N \), so the substitution \(\sigma \) is defined by \(\sigma = [v \rightarrow \text{yes}, n \rightarrow N] \). Then \(M \) is the set \(\{ \{ (v, n) \}_{pub(S)}, \text{yes}, \text{no}, pub(S) \} \). The environment \(env \) is the set \(M \sigma \). The value of \(\max(|p|, p \in SM(M \sigma)) \) is 3. But now, the set of minimal identifiable messages is empty, so the constraints of opacity concerning the value of \(v \) are:

\[
\begin{align*}
\{ (v, n) \}_{pub(S)} & \sim \{ (\text{yes}, N) \}_{pub(S)} \land v = \text{yes} \\
\{ (v, n) \}_{pub(S)} & \sim \{ (\text{yes}, N) \}_{pub(S)} \land v = \text{no}
\end{align*}
\]

It is easy to see that both constraints are satisfiable, so we now have that the expressed vote is opaque. This protocol can be used without fearing that an intruder can guess the value of the vote using bit-to-bit comparisons.

7. Conclusion

In this paper, we extended the notions presented in [Mazaré, 2004]: opacity is also defined as satisfiability of two constraints, but we do not need the hypothesis that keys are atomic anymore. However, the method introduced in [Mazaré, 2004] can be applied to real case whereas our new method to decide satisfiability of constraints is far more complex. The set of predicates which satisfiability is decidable has been extended to predicates using syntactic equalities and non-atomic keys. Moreover, we introduced a new technique to determine what an intruder can guess using bit-to-bit comparisons. Now, we have two distinct theories: on one side Dolev-Yao \(\vdash \) and on the other side \(\vdash_\sigma \). Even if the two theories are closely linked, an idea for future work would be to produce a single theory modeling both kind of attacks. Another interesting extension would be to make the intruder active. If \(C \) can intercept and modify the messages, could he find the right messages to alter such that the property is not opaque any more?

Acknowledgements

The author wishes to thank the anonymous reviewers for their very helpful and constructive comments.
References

