THE EARLY NORDIC SOFTWARE EFFORT

Ingemar Dahlstrand

Formerly at the Department of Computer Science, University of Lund, Sweden;
Paragrafgrédnden 26, SE-22647 Lund, Sweden

Abstract: Early Nordic cooperation comprised ideas, programs, even computer
blueprints and resulted in rapid progress. Regnecentralen contributed
importantly in developing Algol 60. Algol for Facit EDB was used at many
sites. Further advances were Datasaab's Algol Genius and the Norwegian
Simula project. Regrettably, failure of our compiler companies led to software
setbacks. We revisit the Algol debates considering later advances like
functional programming. For example, provability of programs depends on
recursion and absence of side effects. Computer progress forced cooperation
between people from different environments. Too little was done consciously
to avoid the ensuing cultural clashes, which impeded progress.

Key words: Software, compilers, Algol 60, Nordic historical efforts

1. EARLY NORDIC PROJECTS AND
COOPERATION

1.1 Background

When I started working for the SAAB aircraft company in June 1955, the
computer BESK at Matematikmaskinnimnden (MMN) had been in
operation for one and a half year and was already running three shifts. The
SAAB aircraft company, the University of Lund, and Regnecentralen in
Copenhagen had started constructing modified BESK copies, based on
blueprints generously supplied by MMN. These went into operation within
the next two or three years. The move of the original BESK group from

240 Ingemar Dahlstrand

MMN to Facit Electronics in 1956 started a commercial production of BESK
copies called Facit EDB, ten of them altogether. This gradually widened our
circle of cooperation.

Software was extremely primitive in 1955 limited to a small library of
standard procedures. We heard about a formula translating language
FORTRAN, but for us that seemed far beyond reach. In 1956, we received,
for the first time, access to an assembler for symbolic addressing. Our group
at SAAB translated these tools to the machine code of our BESK copy so we
had something to start with. Already then, we discussed software with the
people at Regnecentralen, but as long as we worked at assembly language
level, slight incompatibilities were enough to block actual program
exchange.

1.2 The NordSAM conferences

In 1959 the first Nordic computing symposium, NordSAM, had taken
place in the marine base town of Karlskrona. For the next 10 or 12 years,
these yearly symposia were the important events of Nordic computer world,
the place where ideas were hatched and results reported. (Later they became
rather too big and too commercial to fill this role). In Karlskrona we first
heard of the ongoing work on Algol, centered in Copenhagen;
Regnecentralen administered the Algol Bulletin in which the international
discussion about Algol 58 took place. With the publishing of Algol 60,
writing an Algol compiler had high priority at Facit Electronics, where I was
now working, and they placed me in charge of the project.

1.3 Algol implementation

Our goal was essentially to replace machine coding with Algol
programming on all of the ten Facit EDBs. Our company sold some of them
and ran some of them on a service bureau basis. It meant that the compiler
had to be user friendly; a lot of thought went into identifying source code
errors and producing readable decimal memory dumps. We assembled a
network of contact persons to handle teaching, counseling, and reporting of
compiler errors. The compiler had to produce efficient machine code. To
achieve this we sacrificed recursion, and we were prepared to give up other
features like expressions called by name (“Jensen’s device”), switches and
Boolean variables, as long as we could get the compiler to work and handle
straight, everyday coding fast and well.

We were two persons full time on the project, Sture Laryd and myself.
We divided the work into (1) a preprocessor that caught source code errors
and built up an identifier dictionary, (2) a formula translator proper and (3) a

The early Nordic software effort 241

postprocessor that linked intermediate code with standard procedures to
produce executable code. Laryd took upon himself the formula translator,
which was the most difficult part since we had no experience whatever in
this area. He completed the work on time, by and by including almost all of
the features that had seemed so difficult at the start.

Given our lack of experience, cooperation with other groups was
important, indeed crucial, to success. Via Regnecentralen a journal article
from the German ALCOR Group came inte our hands and provided a first
foundation. Our visits to Copenhagen and discussions with the people there
were invaluable. We learned not only how to implement but also how to
interpret the sometimes quite difficult Algol 60 Report. In particular, the
procedure part gave us headaches. The final Paris conference in January
1960 had accepted contradictory changes to it, so Peter Naur had to
straighten out the whole procedure concept and have it accepted by
correspondence. Right away people started to note unexpected effects of the
new version; for instance, Jensen discovered his famous device at this time
[1].

Our first compiler was ready in October 1961, and was gradually
improved up to 1964, taking into account new I/O hardware, slight computer
modifications to improve procedure handling, and, of course, the experience
gained — and errors found! — through operation. And, we gained a lot of
experience indeed. Once Facit-Algol was available, use of assembler
languages withered in a couple of years, except for maintenance of existing
projects and a few large projects where time or space were of overriding
importance [2].

1.4 Failure of hardware project

The hardware program of Facit Electronics was put to test in 1960 when
competition with U.S. suppliers became a threatening, and finally
overwhelming, reality. A number of important deals were lost to the
Americans, and our company ceased building general-purpose hardware in
1964. The existing computing centers of Facit Electronics were reorganized
into a service bureau Industridata, with the business idea of selling leftover
time on the computers of the owner companies. In spite of this inauspicious
start, Industridata continued in business for 20 years and made a place for
itself both in technical and administrative ADP.

1.5 Algol-Genius at DataSaab

The Algol group at Facit Electronics took part for a couple of years in
compiler work for SAAB, which had gone into commercial computer

242 Ingemar Dahlstrand

building around 1960, and was implementing an amalgam of Algol and
Cobol, called Algol-Genius. This computer effort went on until 1976 and
scored a number of well-earned successes, including supplying the
computers for the Swedish taxation and census authority. Eventually,
however, this company, too, failed in the face of stiff international
competition.

1.6 Hardware failure sets back software

I think it is safe to claim that our software effort was a success. Modern
tools were made available at an early stage and certainly contributed to our
countries becoming advanced computer users from that time on. Unhappily,
much of the momentum gained was lost through the failure of our hardware
effort. The entry of powerful American computers with software in the
FORTRAN and COBOL tradition in many places swamped the Algol-using
groups. Indeed, they dutifully implemented Algol on many computers sold
in Scandinavia; but unless these compilers allowed the user to call
FORTRAN procedures, they could not compete with FORTRAN.

It is perhaps not obvious today why that should be so. However, in those
days software in general and compilers in particular were not portable and
thus closely tied to the associated computer. Computer suppliers developed
compilers to sell hardware, computer and software being offered as a
package. A famous U.S. court decision in 1964 started the slow
“unbundling” process. Suppliers dutifully put separate price tags on
hardware and software, but the software tag sometimes seemed more of a
hint about the possible bargaining range. It was quite some time before
separate software houses became big business.

1.7 Use of the Norwegian Algol successors

In the university world (where I have been since 1968, in Lund) we were
lucky to have good Algol compilers at Control Data and Univac. Especially
the NU-Algol compiler for the Univac 1100 series, written in Norway as part
of the SIMULA project, was reliable, efficient and contained a string
extension. This made it one of the most practical programming tools I have
come across in my computing life. Simula gradually gained ground and has
been used at our Computer Science Department for object-oriented
programming and real-time at least until 1997 (when I went into retirement).
Our pupils sometimes criticized us for using such an old language, but we
could not really find anything newer that was better.

The early Nordic software effort 243
2. ALGOL DEBATES REVISITED

What were, then, the points we discussed in the Algol Bulletin and at our
meetings? There are three points I would like to mention; they are typing,
side effects, and recursion.

2.1 Typing

In pure Algol 60, it is optional whether to specify the types of formal
parameters or not. But we cannot compile a procedure without
specifications without following all possible calls of the procedure from the
main program. If the actual parameters of these calls happen to conflict it
may be necessary to compile several instances of the procedure; compiling it
separately from the main program of course is not possible at all. A closely
related problem was the existence of procedure parameters that were
themselves procedures. This made the tracing of procedure calls very
difficult. Since Algol 60 allowed integer labels, it might happen that an
actual parameter like the number 3 might end up as a label at the end of one
chain of calls and as an integer somewhere else. All this seemed
overwhelmingly difficult at the time.

We patched these problems by making specifications mandatory and
forbidding integer labels altogether. However, a real problem remained,
namely the insufficient typing of procedures and functions. Today we know
that the type of a procedure is in fact a composite type, including the types of
all its parameters and the type of its function value if it has one. This insight
forced itself on the FORTRAN people handling very large programs, where
separate compilation is a necessary evil. A Fortran 90 main program has to
contain a complete specification of any separately compiled procedure that it
calls. In Pascal, a formal parameter that is a procedure always has a
composite type specification, even when there is no separate compilation.

Making specification of parameters mandatory deprived us of the
possibility of writing generic procedures. There is a legitimate need for
generic procedures: for instance, one should only have to write one quicksort
procedure and then be able to use this for any type for which we define the
relational operators. Put in another way, there should be a way of defining
and working with a supertype “sortable”. Another such supertype would be
“arithmetic”, allowing us to write generic matrix procedures.

For other reasons, explicit specifications are mostly unnecessary. In a
functional programming language like Miranda, we can compute the types
of all entities in the program at compile time from the operations used and
the calling sequences that are inherent in the program structure. The
compiler finds all typing errors in this process, so the typing is strict, or

244 Ingemar Dahlstrand

rather, as strict as necessary. Type specifications may be added to ease
understanding, but the only place they may actually be needed are for the
input files.

All of this we could not possibly have foreseen in 1960. We did what we
had to do just to push through those first implementations. What we perhaps
did wrong was that we did not question Algol enough; we did not draw a
line between design weaknesses in Algol and our own implementation
problems. Algol seemed so brilliant it was almost sacrilege in our
environment to criticize it. However much we admire our brain products,
we must see their faults and get on with progress — or someone else will.

2.2 Side effects
Let us now turn to the side effects issue and begin by having a look at the
famous function Sneaky that Mike Woodger presented to the Algol

community in December 1960 [3].

real procedure Sneaky (z); real z; value z;

begin Sneaky := z + (z - 2)t2; W := z + 1 end Sneaky;
P := Sneaky (k) * W;

It was reasonable to assume that W would enter into this expression with
its new value k+1, as a side effect of Sneaky. Suppose we changed the order
of the factors? Would W * Sneaky(k) return a different result, based on
some previous value of W?

There were three ways of tackling this problem. The computer scientists
among us wanted to prescribe the exact order of evaluation of primaries.
They wanted every well-formed program to have a defined result. The
mathematicians threw up their hands in horror at this. If two expressions
were mathematically equivalent, they ought to produce the same result.
Therefore, they wanted to forbid a function to change global variables at all.
The rest of us we ready to leave the case undefined, thus discouraging
sneaky coding. The dispute took on a religious fervor and almost split the
Algol community in two.

The computer science side won the day, in the sense that they established
evaluation from left to right. However, the mathematicians won the public
relations battle, one might say. For tens of years afterwards, new
programming languages would prohibit “undesirable side effects” — even in
command languages that did not contain functions at all.

It is interesting to see that in Miranda side effects can not take place
(since there is no way of changing an entity once bound to a value) and this

The early Nordic software effort 245

is one of the features which make it possible to transform and prove Miranda
programs [4]. It is also interesting to note how strict one must be to achieve
this freedom from side effects; for instance random numbers in Miranda
conceptually form an infinite array, the elements of which are unknown at
start and computed as needed. So instead of

square (random) # random*random
which is a paradox, we have

square (random[i]) = random([i] *random[i]
whereas

square (random[i]) # random[i]*random[i+1]
Simple and logical!

2.3 Recursion

Recursion, or more precisely whether to implement it, was a third topic
discussed intensely. At Facit we decided not to, which probably gave us a
faster executing code, which again probably contributed to the rapid spread
of Algol among our customers. However, I do admit I did not realize the
importance of recursion for a “clean” implementation. (Ours had a
persistent bug or two that propagated to SAAB’s Algol-Genius compiler.)
Nor did I see that applications in linguistics (including compiling) require
recursion; nor did I foresee that recursion is another one of the bases for
program proving in the sense of Miranda.

24 Input/Output

Input/output was not a topic of strife between the Algol groups, since
they left it explicitly to the implementer. The lack of string facility made it
difficult to do much more than a few ad hoc procedures in this area. Donald
Knuth’s I/O scheme, which came later, ingeniously circumvented the formal
problems of I/O by list procedures. It was a very difficult scheme to
implement; I spent a summer trying and failing. When General Electric did
implement it for ASEA’s new GE-625 it made the printer slower than the
one running on their old Facit EDB. Moreover, of course, behind the scenes
it required just the character variables and string handling we were so
reluctant to add explicitly to the language.

Looking back, I regret the time we spent on polishing, standardizing, and
subsetting Algol. Algol had played out its role, once they had implemented
it in a number of sites and sown the seeds that were to give such a rich
harvest of new languages. Making extensions where we deemed them
necessary would have given us more benefit, in the short run and the long
run.

246 Ingemar Dahlstrand
25 Is there a sens moral?

With the benefit of hindsight, I can see that I took the wrong view in
most of these discussions. I can only hope I did not seem too fanatic.
Fanaticism clouds the vision and creates opposition; what one rams through
in this way is seldom good enough and rejection will be its eventual
outcome.

A more positive formulation of the same sens moral would be “Think,
travel, and talk”. One of the bad things about today’s world is the
impediments to travel such as expensive fuel, humiliating security controls,
companies saving money the wrong way. Most trips pay for themselves in
terms of knowledge gained and new ideas. Now and then, a single trip gives
so much benefit that it pays for a decade of travel budgets. Cutting the travel
budget in a crisis is a bit like throwing away map and compass when you are
lost in the woods: it may lighten your burden but does not help you get out.

2.6 Why did our hardware efforts fail?

Why did our hardware efforts fail? Too little is known about what went
on behind the scenes in government and in the companies involved. The
easy way out is to say that it was inevitable. Much larger actors (Charles de
Gaulle comes to mind here) failed, at much greater cost. Nevertheless, the
fact remains that the Swedish government through MMN stumbled to the
forefront of an extremely interesting field and let slip this chance, only to
pump much more money into SAAB when it was too late. There cannot
have been an ideological block or fear of technique in general: hundreds and
thousands of millions went into nuclear power and even steel, and Sweden
has a long history of making its living by innovation.

3. CULTURAL DIFFERENCES AS A CAUSE OF
FAILURE

Perhaps we who worked in the field spent too little time talking to
politicians, managers and the like. A few of us did, but most of us were so
engrossed in making things work that we had little energy left for this long-
range work. There was certainly no lack of conviction among us that this
new gadget, the computer, would revolutionize the world. However, talking
across cultural barriers is difficult. It takes a lot of experience to realize that
we have to do it anyway, as the following examples try to show.

The early Nordic software effort 247

3.1 Technicians vs. administrators

In the early days, even elementary knowledge of computing was lacking
outside our little band of specialists. For instance, when our managing
director was going to inaugurate our compiler, he thought it was a piece of
hardware and wondered whether it was transistorized. Not unreasonable —
nowadays such special hardware is actually built — but at that time a serious
lack of knowledge for one who had to make strategic decisions for our
company. My point here is that we, who knew, did nothing about it. This
was an awful mistake and one of the causes of failure. We might not have
gotten through to our manager, but there is no excuse for us not trying. This
kind of mistake — young experts looking down on their elders instead of
sharing knowledge with them — is repeated daily with equally sad effects.

It is interesting to note that the company did not apply its strict routines
for industrial secrecy to software development; we could cooperate freely
with other institutions. On the other hand, they kept us out of hardware
development; to this day I do not know what plans might have existed
beyond building BESK copies and I/O equipment for them.

We had another very concrete problem in that the company wanted to use
computers for office work, whereas we, their computer people, had received
training in scientific and technical work. Few of us knew what an
administrative office was like let alone how it worked. We never bridged
this gap; we remained strangers in our company and were eventually pushed
out to do what we knew best, as a service bureau. Our mother company
never really found its place in this strange new world and foundered
tragically some ten years later, after having been in business for some 500
years.

3.2 Professors vs. Computing centers

Yet another example of cultural differences, in this case between people
of the same background and education. In 1964, the Swedish government’s
agency for administrative development, Statskontoret, decided it was time to
organize computer resources for the universities. A scheme was set up
which included fresh money earmarked for computer time, which the
respective universities shared out to departments, which in turn passed it on
to teachers and researchers. They could use the money to pay for computer
services from any of the computing centers set up at the same time. The
scheme also allowed the centers to earn money from external sources and
use this money for extra computing equipment. To the rational people at
Statskontoret this seemed a generous and flexible scheme of things. So, it

248 Ingemar Dahlstrand

seemed to me, coming from the service bureau world to head the Lund
center in 1968. It turned out otherwise.

The money allotted to the universities was for a one-shift operation of the
centers. The idea was that the departments should find more money from
other sources if the earmarked money was not enough — and very soon, it
was in fact not enough. This went completely against the grain of university
life. University people would not use hard-earned money intended for
salaries to pay for computer time. Finding money for the computing center
was the task of the head of the center, just as finding money for books was
the job of the library director. The centers remained at one shift. A storm of
protest ensued that finally forced Statskontoret to accept radically lowered
night rates, after which our university customers rapidly filled three shifts.
Meanwhile we had managed to find quite a lot of external customers, at
some centers almost 50%. Now criticism took the opposite direction; they
accused us of neglecting the university customers for the external ones.
Eventually the centers decentralized as the advent of PCs made the old
organizations obsolete. (After a dozen years as a teacher at the Computer
Science Department, I now understand the academicians’ side of the debate
much better!)

The list of examples of cultural clashes could be long. Think of the
lawyers who tried for decades to use copyright to protect program owners
against unauthorized wuse of programs. Consider the standards institutes,
organized on national lines, trying to cope with computing where the only
national issues are character sets. Surely cultural differences of all sorts are
so very important to success in a new branch that working place culture
ought to be a subject in its own right at technical universities.

4. CONCLUSIONS

I would to like to conclude by giving my personal answers to two
questions maybe all of us should ask ourselves at the end of the day: What is
my greatest error of judgment in working life? I have to choose between
two — equally embarrassing — alternatives: underestimating the impact of
networks and the impact of the PC wave. Not that I did not expect the
future to contain networks, but I expected a network to offer a much more
standardized set of services and terminals, much like the telephone service
used to be. I did not dream of people tinkering with their own computers on
the present scale. A terminal, yes, and a printer, yes, and a friendly service
man from the national computer service coming home on call to exchange
non-working or too slow equipment. I dislike being told that my computer
is ready for the scrap heap and that I have to go through all the cost and

The early Nordic software effort 249

trouble of switching to a new one, though the old one is sufficient for my
needs. In other words, I expected (and wished for) a sort of computer
service bureau on a national or global scale.

Does work remain undone? Yes, we still lack a standard, convenient,
safe programming language in general use and a teaching and help service
to go with it. Too much interest has come to focus on ready-made
programs, which may be fine for the general user, but is far too restrictive in
a research environment. It is as if we had invented printing and writing, but
failed to educate people beyond the ability to read comic strips. The full
potential of the computer will not be realized until the direct use of it is in
every man’s hands, a parallel to the alphabetization of the common man that
took place in the 1800s. That is the challenge I would like to pass on to the
next generation.

REFERENCES

In this paper:
[1] Peter Naur: The European side of the last phase of the development of Algol 60; pp 110-

113 in Richard L. Wexelblat (ed.): History of Programming Languages, Academic Press,
1981, ISBN 0-12-745040-8

[2] Ingemar Dahlstrand: 4 half year’s experience of the Facit-Algol 1 compiler; in BIT
(Nordisk tidskrift for informationsbehandling), Regnecentralen, Copenhagen, Vol. 2
(1962), pp 137-142.

[3] M. Woodger: Comment on a function designator changing the value of a formal variable;
Algol Bulletin 11.4, P. Naur (ed.), Regnecentralen, Copenhagen 1960.

[4] R. Bird & Ph. Wadler, Introduction to Functional Programming, Prentice Hall, 1988,
ISBN 0-13-484197-2

Other books concerning Nordic computer history:
[5] Poul Sveistrup, Peter Naur, H. B. Hansen, Chr. Gram: Niels Ivar Bech - en epoke i edb-

udviklingen i Danmark (Niels Ivar Bech - an epoch in the EDP development in Denmark),
Copenhagen 1976, ISBN 87-980512-0-2.

[6] Jan Annerstedt et al.: Datorer och politik - Studier i en ny tekniks politiska effekter pa det
svenska samhdllet (Computers and politics - Studies on the political effects of a new
technique on Swedish society); Zenith/Bo Cavefors forlag, 1970.

