
Modelling Dynamic Access Control Policies for
Web-based Collaborative Systems ⋆

Hasan Qunoo and Mark Ryan

School of Computer Science,
University of Birmingham, UK,p

{H.Qunoo, M.D.Ryan}@cs.bham.ac.uk

Abstract. We present a modelling language, called X-Policy , for web-
based collaborative systems with dynamic access control policies. The
access to resources in these systems depends on the state of the system
and its configuration. The X-Policy language models systems as a set of
actions. These actions can model system operations which are executed
by users. The X-Policy language allows us to specify execution permis-
sions on each action using complex access conditions which can depend
on data values, other permissions, and agent roles. We demonstrate that
X-Policy is expressive enough to model collaborative conference manage-
ment systems. We model the EasyChair conference management system
and we reason about three security attacks on EasyChair.

1 Introduction

Large conference management systems like iChair, WSAR, HotCRP and Easy-
Chair are widely used to manage academic conferences. However, the size and
the complexity of these systems make it hard to analyse their policies and their
security properties. The policies of those systems are designed to preserve the
system security and serve their desired purpose. Systems, however, can still fail
some basic security properties. Users can compromise the system policy and its
security properties by interactions of rules, co-operations between agents and
multi-step actions. In EasyChair, the system is designed to collect a number
(usually between 3 and 4) of reviewer’s opinions of a submitted paper. These
opinions determine whether a paper should be accepted or rejected. For the sys-
tem rules to be fair, no single reviewer should be able to determine the outcome
of a paper reviewing process by writing all three reviews of that paper. How-
ever, the intention of these rules can be breached by interaction of rules to allow
a single user to write all the three reviews of a paper. For example, a single
sub-reviewer manages to write all three paper reviews while all the agents still
comply with the system rules.
In this paper, we present a simple yet expressive modelling language, called X-
Policy , to model large web-based collaborative management systems. Our lan-
guage enables us to:
⋆ The long version[1] of this paper can be found at the authors’ web pages.



2 Hasan Qunoo and Mark Ryan

– model dynamic systems as a set of atomic multi-assignment write actions.
– specify read actions that gives us the ability to specify who can read what.
– specify action executing policy as preconditions which the user has to satisfy

to execute the action.

We also use EC as a case study for our language. We model EC in X-Policy
and we reason about three security attacks on EasyChair using our model. The
long version of this paper is available at [1].

1.1 Paper Structure

We detail in Section 2 the related work. In Section 3, we present the X-Policy
language and the process of expressing the EC model using X-Policy language
and formalism. We introduce a selection of EC actions with their execution per-
missions statements which are used in the security attacks on EC and EasyChair
in Section 3.2. The conclusion and future work are in Section 4.

2 Related Work

Recently, there has been a plethora of languages and logics to express access
control policies. These logics and languages try to solve various issues arising
from decentralisation[2,3,4,5,6,7]. DeTreville was the first to propose a Datalog
based security language called Binder[4]. Since then Datalog has become the
foundation of recent logic-based access control policies like the RT family [7]
and SecPAL[2]. Researchers are mainly attracted to Datalog[8] as they can start
from a tractable and expressive language with the advantage of deducing trust
relations effectively based on well developed logic programming concepts and
deductive databases. Unfortunately, Datalog is stateless. Inherently, the ability of
datalog-based languages to express dynamic access control policies is restricted.
Cassandra[9], a Datalog-based language, has a separate mechanism to maintain
the authorisation state by inserting and retracting “hasActivated” facts according
to the policy rules.

Gurevich et. al. introduced Distributed Knowledge Authorisation Language
DKAL[5] and DKAL2[6] that extend SecPAL’s expressiveness. However, Cassan-
dra, SecPAL, DKAL, DKAL2 and other authorisation languages lack the ability
to express the dynamic aspect of access control where policies depend on and
update the system state like those we have in EC . They, also, cannot express
the effect of actions as part of the language and it has to be hard-coded in an
ad-hoc way. More recently, DyNPAL[3] aims to specify dynamic policies with
the ability to specify the effect of executing these actions. DyNPAL allows con-
ditional bulk insertion and retraction of authorisation facts with transactional
execution semantics (either all or none are committed). However, DyNPAL’s
declarative nature and minimalistic approach make it hard to follow the con-
trol flow of the actions. Also the lack of parameter typing does not allow us
to establish the relation between the agent who can execute an action and the



Dynamic Access Control Policies for Collaborative Systems 3

action itself. They tend to focus on answering the question “under what condi-
tions can an action be executed?” rather than “under what conditions can an
agent execute an action?”. This is indeed necessary to enable us to define agent
coalitions and establish which agent is executing an action. It allows us to detect
attacks where we are interested in who can execute a set of actions rather than
whether a set of actions can be executed regardless of the actors involved. RW
framework[10], a precursor of X-Policy , can analyse the consequences of multi-
agent multi-step actions by performing temporal reasoning. RW is both model
checking based frameworks. However, RW, unlike X-Policy , cannot express the
actions with multiple assignments needed to preserve the integrity constraints
of the modelled system.

To the best of our knowledge, this is the first paper to model and analyse
dynamic access control policy for a large web-based collaborative system with
atomic actions like EasyChair.

3 Modelling EasyChair Conference Management System

We specify system operations as X-Policy programs[1] which can be either write
programs that change the state of the system or read programs that give the
user/agent the knowledge about the state of the system. Programs in X-Policy
can not read and change the state of the system at the same time. Although
this is formally a restriction, most actions in collaborative web-based systems
are indeed either a read or write and rarely both. This is true for EasyChair in
particular. We believe that this is a sensible heuristic for modelling web-based
systems. Users are only enabled to perform only one operation per time.

A read program allows the user to know the value of a ground proposition by
returning the value of that proposition to the user who executed the program. A
write program allows the user to change the value of a set of ground propositions
using assignment statements in the form p(−→y ) := ⊤; or p(−→y ) := ⊥; where p(−→y )
is a ground proposition. We allow a proposition to occur at most once at the left
of ":=". The assignment statements within the same program can be written in
any order. Such an assumption result in making the programs effect independent
from the state of the system and each program has the same effect at all the
time. A program permission statement exec(g,u) defines the conditions for an
agent u to execute a program g. These conditions are defined as propositional
logic formulae using the ground propositions and logical connectors. The full
syntax and semantics of X-Policy are details in the long version[1].

3.1 EC model in X-Policy formalism

In this section, we discuss the model EC . We build EC , a model of our under-
standing of EasyChair and restrict EC to a single conference system. We express
the EC model in X-Policy formalism[1]. To model EC , we define a number of
predicates P . For a,b of type Agent, p of type Paper, P includes:

Chair-review-en() Review menu is enabled for Chair to manage the reviews of papers.



4 Hasan Qunoo and Mark Ryan

PCM-access-reviews-en() PC members can access (view) other papers reviews.
PCM-review-editing-en() PC members can add/modify reviews.
PCM-review-menu-en() Review menu is enabled for PC members.
Review-assig-enabled() Review assignments enabled.
Sub-anonymous() Submissions are anonymous. The name of authors are obscured.
View-sub-title-permitted() PC members can view the submissions title of all the papers.
Auth(p,a) a is an author of p.
Chair(a) a is the chair of the PC.
Conf-of-interest(p,a) a has a conflict of interest with the p.
Decided-subrev(p,a,b) b has accepted or rejected the subreviewing request for p issued by a.
PCM(a) a is a PC member.
Requested-subrev(p,a,b) a has requested b to be his subreviewer for p.
Reviewer(p,a) p is assigned to PC member a for reviewing.
Submitted-review(p,a,b) b’s review of p has been submitted by a.
Subreviewer(p,a,b) b has accepted the subreviewing request for p issued by a.

We now define the set of actions Actions and their execution permissions using
the formula exec(act, u) for each action act ∈ Actions. The execution permission
statements define whether or not u of type Agent is allowed to execute such
an action and in what state. In the following, we list a sub-set of EC actions
and their permission statements which are used in our properties analysis in
X-Policy :

1. When the review menu is enabled and the submitted paper is not deleted:
(a) A PC chair can read all the paper reviews. (b) A PC member can read
a review for a paper p if she is a reviewer of that paper and has submitted
her review. (c) A PC member can read a review for a paper to which she
is not assigned, when PC members are permitted to access the titles and
reviews of submitted papers. She also must have no conflict of interest with
that paper.

Action ShowRev(p,a,b):- { return Submitted-review(p,a,b); }

exec(ShowRev(p, a, b), u) 




(
Chair(u) ∧ Chair-review-en()
∧∃d : Agent . Auth(p, d)

)

∨


PCM(u) ∧ Reviewer(p, u)
∧PCM-review-menu-en()

∧∃ c : Agent . Submitted-review(p, u, c)
∧∃d : Agent . Auth(p, d)



∨


PCM(u) ∧ ¬Reviewer(p, u)
∧PCM-review-menu-en()

∧View-sub-title-permitted()
∧PCM-access-reviews-en()
∧¬Conf-of-interest(p, u)
∧∃d : Agent . Auth(p, d)




2. When the review menu is enabled and the submitted paper is not deleted:

(a) A PC chair can submit a review for any paper as himself. (b) A PC
chair can submit a review for a paper as another PC member using “log
in as another pc member” if the PC member is allowed to submit a review
for that paper. (c) A PC member can review a paper if she is assigned to
review that paper. (d) A PC member can review a paper to which she is not
assigned when PC members are permitted to access the titles and reviews of
submitted papers. She also must have no conflict of interest with that paper.



Dynamic Access Control Policies for Collaborative Systems 5

Action AddRev(p,a,b):-{ Submitted-review(p,a,b):= ⊤;}

exec(AddRev(p, a, b), u)) 




(
Chair(u) ∧ Chair-review-en()

∧a = u ∧ ∃d : Agent . Auth(p, d)

)

∨



(a = u ∨ Chair(u)) ∧ ∃c : Agent . Auth(p, c)

∧



 PCM(a) ∧ Reviewer(p, a)
∧PCM-review-menu-en()
∧PCM-review-editing-en()



∨


PCM(a) ∧ ¬Reviewer(p, a)
∧PCM-review-menu-en()

∧View-sub-title-permitted()
∧PCM-access-reviews-en()
∧¬Conf-of-interest(p, a)








3. When the review menu is enabled and the submitted paper is not deleted:

(a) A PC chair can request another agent to subreview any paper. (b) A
PC member can invite another agent to subreview a paper: (1) if she is the
reviewer of the paper or (2) if the system is configured to give PC members
access to the paper submission titles and reviews. The invited agent can
decide whether to accept or reject the reviewing request as long as the paper
has not been withdrawn. A PC member cannot cancel the subreviewing
request but can accept or reject the request on behalf of the invited agent.
Once the decision is made, only the PC member can change the decision.

Action RequestRev(p,a,b):- { Requested-subrev(p,a,b):= ⊤;}
Action AcceptRevRequest(p,a,b):-

{ Decided-subrev(p,a,b):=⊤; Subreviewer(p,a,b):=⊤;}
Action RejectRevRequest(p,a,b):-

{ Decided-subrev(p,a,b):=⊤; Subreviewer(p,a,b):=⊥;}

exec(RequestRev(p, a, b), u) 




(
Chair-review-en() ∧ Chair(u)
∧∃c : Agent . Auth(p, c)

)
∨

PCM(u) ∧ Reviewer(p, u)
∧PCM-review-menu-en()
∧∃c : Agent . Auth(p, c)



∨


PCM(u) ∧ ¬Reviewer(p, u)
∧PCM-review-menu-en()

∧View-sub-title-permitted()
∧PCM-access-reviews-en()
∧¬Conf-of-interest(p, u)
∧∃c : Agent . Auth(p, c)




exec(AcceptRevRequest(p, a, b), u) 


 Requested-subrev(p, a, b)
∧∃c : Agent . Auth(p, c)

∧
(
¬Decided-subrev(p, a, u) ∨ u = a

)


exec(RejectRevRequest(p, a, b), u) 


 Requested-subrev(p, a, b)
∧∃c : Agent . Auth(p, c)

∧
(
¬Decided-subrev(p, a, u) ∨ u = a

)


4. Given that paper assignments are enabled, a PC chair can assign/de-assign
a submitted paper to a PC member or a PC chair for reviewing, when she
has no conflict of interest with that paper.



6 Hasan Qunoo and Mark Ryan

Action AddReviewerAssignment(p,a):-{ Reviewer(p,a) := ⊤; }

exec(AddReviewerAssignment(p, a), u) 



Chair(u) ∧ (PCM(a) ∨ Chair(a))

∧Review-assig-enabled()
∧¬Conf-of-interest(p, a)
∧∃c : Agent . Auth(p, c)


3.2 Case Study: Analysis of EC security properties

In this Section, we will present three security properties in EC . We have discov-
ered these issues while using EasyChair. In each case, we show an attack strategy
to achieve an undesirable state. Each strategy is an execution sequence of read
and write actions. A strategy can be executed by more than one agent where
agents collaborate to reach the goal. These attacks can be derived using EC and
have succeeded on EasyChair as of 1st of Spetember 2009. In the following, we
report the results of each attack and make some suggestions on how to fix the
system. For our EC model, we create the following configuration:

1. The system has five agents: Alice, Bob, Eve, Carol and Marvin. The system
has two submitted papers: p1 and p2.

2. Alice is the Chair of PC. Bob and Carol are PC members. Paper p1 is sub-
mitted by the author Marvin while p2 is submitted by the author Eve.

The detailed configuration and the attacks derivation of the model EC can be
found at [1].

Property 1: A single subreviewer should not be able to determine the
outcome of a paper reviewing process by writing two reviews of the
same paper. We show that we can derive an attack against EC involving 4
agents: Alice, Bob, Carol, and Eve. We explain the attack scenario as a sequence
of actions executed by these agents as follows:

1. Alice acts as chair. She executes the actions: AddReviewerAssignment(p1,Bob)
to assign Bob to review the paper p1. She also executes AddReviewerAssign-
ment(p1,Carol) to assign Carol to review the paper p1.

2. Bob and Carol both assign Eve as their sub-reviewer for paper p1 by exe-
cuting the actions RequestRev(p1,Bob,Eve) and RequestRev(p1,Carol,Eve) re-
spectively.

3. Eve accepts the two paper subreviewing requests and sends Bob and Carol
two similar reviews using AcceptRevRequest(p1,Carol,Eve) and AcceptRevRe-
quest(p1,Bob,Eve).

4. Bob and Carol receive Eve’s reviews and submit them to the system using
AddRev(p1,Bob,Eve) and AddRev(p1,Carol,Eve).

EasyChair fails this property and allows Eve to submit two reviews for the same
paper. One possible fix for this attack is as follows. Every time an agent a in-
vites another agent b to subreview a paper, EasyChair should check whether
agent b has been invited by another agent to subreview the same paper. We



Dynamic Access Control Policies for Collaborative Systems 7

conjoin the condition ¬∃ d : Agent . Requested-subrev(p, d, b) to the permission
statement exec(RequestRev(p,a,b),u). This will prevent Carol from executing Re-
questRev(p1,Carol,Eve) as Requested-subrev(p1,Bob,Eve) is in the previous state.

Property 2: A paper author should not review her own paper. As before,
we explain the attack scenario as a sequence of actions executed by the agents
Alice, Bob and Eve:

1. Alice acts as Chair and assigns Bob, who is a PC member, to review the paper
p2 submitted by Eve by executing the action AddReviewerAssignment(p2,Bob).

2. Bob executes the action RequestRev(p2,Bob,Eve) to assign Eve as his sub-
reviewer as she is a good researcher in the field.

3. Eve accepts the request using AcceptRevRequest(p2,Bob,Eve).
4. Bob submits the review using AddRev(p2,Bob,Eve).

In this case, EasyChair fails the property and allows Eve to review her own
paper. Note that the names of the authors and other reviewers are not known to
the PC members. One possible fix for this attack is that every time an agent a
invites another agent b to subreview a paper, EasyChair should check whether
agent b is actually an author of that paper. We add the condition ¬Auth(p, a)
to the permission statement exec(RequestRev(p,a,b),u). In this case Bob cannot
execute RequestRev(p2,Bob,Eve).

Property 3: Users should be accountable for their actions. This property
is violated in several ways, all of which involve the use of "log in as another pc
member”. For example, the system should not allow the chair to submit a review
for a paper as another PC member without making it clear that it is actually
the chair who has submitted the review and not the PC member. The following
attack scenario involves Alice and Bob:

1. Alice is the chair. She executes AddReviewerAssignment(p1,Bob) to assign Bob
to review the paper p1.

2. Bob submits his review using AddRev(p1,Bob,Bob).
3. Alice reads Bob’s review of paper p1 by executing ShowRev(p1,Bob,Bob).
4. Alice submits a review for the paper p1 as if she is Carol who is a very famous

and sought after academic by executing AddRev(p1,Carol,Carol).

EasyChair fails this property and allows the chair to read another reviewer’s
review for a paper and then submits a review for that paper as another PC
member without being detected by the other PC members or the other chairs.
This attack is possible because the system does not register the name of the user
who updated the review. It will appear to others as if Carol has submitted the
review herself. One possible fix for this attack is for AddRev() to have an addi-
tional parameter. Alice would then need to execute the action AddRev(p,a,b,c)
where agent a is the chair acting on behalf of b who is the PCmember submitting
the review written by agent c. The predicate Submitted-review() also has to be
changed accordingly.



8 Hasan Qunoo and Mark Ryan

4 Conclusion and Future Work

We present a modelling language, X-Policy , to model the dynamic execution
permissions of large web-based collaborative systems. We demonstrate the appli-
cability of X-Policy to real-life web-based collaborative systems like EasyChair.
Using X-Policy , we reason about the security properties of three security proper-
ties for EasyChair and described the possible attacks on these properties as well
as ways the system could be changed to prevent these attacks. We have informed
the developer of EasyChair of our findings. The full EC model is available at
[11]. It contains 49 actions and permission statements. This is relatively concise
given the size and complexity of EasyChair. The way the system functionality
is split into actions is decided by our understanding of how the system is ac-
tually designed. Due to space restrictions, we detail the syntax and semantics
of X-Policy and the traces for the discussed attacks in the long version of this
paper [1]. In future work, we would like to model and analyse more systems,
develop, and implement an algorithm to automate the analysis of these systems
using model checking techniques.

References
1. Qunoo, H., Ryan, M.: Modelling dynamic access control policies for web-based

collaborative systems - long version. Technical report, School of Computer Science,
University of Birmingham (April 2010) Available at the authors’ webpage.

2. Becker, M., Fournet, C., Gordon, A.: Design and semantics of a decentralized
authorization language. In: Computer Security Foundations Symposium, 2007.
CSF ’07. 20th IEEE. (2007) 3–15

3. Becker, M.Y.: Specification and analysis of dynamic authorisation policies. Com-
puter Security Foundations Symposium, IEEE 0 (2009) 203–217

4. DeTreville, J.: Binder, a logic-based security language. In: Proceedings of the 2002
IEEE Symposium on Security and Privacy. (2002)

5. Gurevich, Y., Neeman, I.: DKAL: Distributed-knowledge authorization language.
In: CSF ’08: Proceedings of the 2008 21st IEEE Computer Security Foundations
Symposium. Volume 0., Washington, DC, USA, IEEE Computer Society (2008)
149–162

6. Gurevich, Y., Neeman, I.: DKAL 2 : A simplified and improved authorization
language. Technical report, Microsoft Research - Cambridge (2009)

7. Li, N., Mitchell, J.C., Winsborough, W.H.: Design of a role-based trust manage-
ment framework. In: Proc. IEEE Symposium on Security and Privacy, Oakland.
(May 2002)

8. McDermott, D., Doyle, J.: Nonmonotonic logic 1. Artificial Intelligence 13 (1980)
41–72

9. Becker, M.Y., Sewell, P.: Cassandra: distributed access control policies with tun-
able expressiveness. 5th IEEE International Workshop on Policies for Distributed
Systems and Networks (POLICY) (2004)

10. Zhang, N., Ryan, M., Guelev, D.P.: Synthesising verified access control systems in
XACML. In: 2004 ACM Workshop on Formal Methods in Security Engineering,
Washington DC, USA, ACM Press (Oct 2004) 56–65

11. Qunoo, H., Ryan, M.: EC model in X-policy. online at
http://www.cs.bham.ac.uk/~hxq/X-policy/ (Dec 2009)


