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Abstract. In a mobile environment, user’s physical location plays an important
role in determining access to resources. However, because current moving ob-
ject databases do not keep the exact location of the moving objects, but rather
maintain their approximate location for reasons of minimizing the updates, the
access request evaluation cannot always guarantee the intended access control
policy requirements. This may be risky to the system’s security, especially for the
highly sensitive resources. In this paper, we introduce an authorization model that
takes the uncertainty of location measures into consideration for specifying and
evaluating access control policies. An access request is granted only if the confi-
dence level of the location predicate exceeds the predefined uncertainty threshold
level specified in the policy. However, this access request evaluation is compu-
tationally expensive as it requires to evaluate a location predicate condition and
may also require evaluating the entire moving object database. For reducing the
cost of evaluation, in this paper, we compute lower and upper bounds (Rmin and
Rmax) on the region that minimize the region to be evaluated thereby allowing
unneeded moving objects to be discarded from evaluation. We show how Rmin

and Rmax can be computed and maintained, and provide algorithms to process
access requests.

1 Introduction

Unlike the traditional access control system, in a mobile environment, a person’s physi-
cal location plays an important role in determining access rights. For example, access to
certain important resources of an organization can be restricted to employees who are
currently located within the office area. This concept of location-based access control
(LBAC) system is not new. For example, in [6], when an access request is made from
a moving object, the system checks whether the requester lies within the authorized
region and only if this is the case, access is granted.

We can categorize access control rules based on the mobility of subject/resources as
(i) static subjects to access mobile resources (SM), (ii) mobile subjects to access static
resources (MS), and (iii) mobile subjects to access mobile resources (MM). First, SM
is to restrict access to resources based on the spatiotemporal locations of resources. For
example, the New York branch operations department of a truck company are allowed
to track the locations of dispatched trucks that are currently located within New York
City. Second, MS restricts access to static resources based on the spatiotemporal loca-
tion of the subjects. For example, security managers are allowed to read or write the
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mobile network data only when they are currently located within the server farm room.
Finally, in MM, access control decisions are made based on the spatiotemporal location
of subjects and resources. For example, all supervisors who are currently located within
the office building can locate their employees only when they are also currently in the
same building.

The proposed LBAC systems [4, 6, 9, 18] assume that provided location measure
of moving object is always accurate. For example, in GEO-RBAC [9], positions can be
real or logical: the real position corresponds to the position on the Earth of the mobile
user obtained from location-sensing technologies such as Global Positioning Systems
(GPS) while the logical position is modeled as a polygon feature such as city, i.e., a real
position acquired through GPS can be mapped to a corresponding road segment (logi-
cal position). A spatial role is activated based on the location (either logical or real) of
the user. However, considering the fact that users are moving objects, most of the time,
the provided location information is not precise because of continuous motion [21]. In
fact, most of currently proposed moving object databases do not keep the exact location
of the moving objects, rather maintain the approximate value of the location in order
to minimize the updates. Therefore, a location measure stored in the moving object
database should be modeled as a region instead. In general, we call this inherent error
of a location measure as location uncertainty. However, if we consider the inherent un-
certainty of location measures, the role activation in GEO-RBAC cannot guarantee the
desired security. In other words, their underlying assumption that any logical position
can be computed from real positions by using specific mapping functions are not true
any longer because it is possible that several logical positions can be mapped from a
single real position. This may incur huge risks to the security of the system especially
for highly sensitive resources. Therefore, it is essential that all LBAC systems must
incorporate the concept of uncertainty within the model.

To the best of our knowledge, the work of Ardagna et al. [3] is the only LBAC
model where uncertainty is considered. They present a model for representing and eval-
uating a set of location predicates. Each access request can gain access to the specified
resources only if the confidence level of the location predicate result exceeds the pre-
defined uncertainty threshold level. Formally, given an access control rule’s location
predicate and a user o, we need to evaluate the probability po, the chance that o satisfies
the given location predicate, to determine the satisfiability of the predicate (i.e, o is lo-
cated within an authorized region R). Given an authorized region R and o’s uncertainty
region denoted as o.ur, po is computed as

po =
∫

o.ur∩R

fo(x)dx (1)

where x is the location of o in d-dimensional data space D, fo is the probability density
function (PDF), and o.ur∩R is the intersection of o.ur and R. In other words, po is the
confidence level of the location predicate result. The user o gains access to the resources
only if po ≥ pc where pc is the predetermined predicate threshold. However, their model
has the following limitations: (i) the uncertainty thresholds for location predicates are
globally fixed values, thus lacking the specification power for different situations: for
example, the minimum threshold of location predicate for granting access is a globally
fixed level, and therefore, it cannot differentiate between highly security-sensitive area
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and less sensitive area by assigning different confidence levels; and (ii) resources are
assumed to be always static, and therefore, only MS type of security policies for a
mobile environment can be evaluated.

To address the above limitations, we introduce an access control model that embeds
uncertainty within the model. In this model, we allow varying threshold levels of loca-
tion predicates; thus, it is possible to differentiate the highly security sensitive area and
less sensitive area in an access control rule. Also, in addition to MS type of security
policies, SM and MS type of policies are supported. Although Ardagna et al.’s model
can be extended to support MM and SM type of queries by incorporating location pred-
icates in specifying resources, the main challenge of supporting them in their model is
the evaluation part, which is the focus of this paper: it is hard to evaluate the resources’
satisfiability to an access request. For example, if location of employees in a given area
are requested, considering the location uncertainty, the access control enforcement sys-
tem cannot simply release the location of employees inside the region since it is still
possible that some people who are believed to be located outside may, in fact, be in-
side, and vice versa, i.e., people believed to be inside may actually be outside. Under
Ardagna et al.’s model, in order to guarantee the correctness of the query results, it may
require to evaluate all the moving objects in the database since they only allow Boolean
queries.

Our main objective in this paper is to reduce the cost of location predicate evalu-
ation. There are two main challenges: (i) the computation of Equation (1) is compu-
tationally expensive. For example, under the normal distribution case, o.ur ∩ R is not
symmetric with respect to the mean [20], and therefore, it is expensive to compute; (ii)
the size of uncertainty region grows as time elapses because the actual location can
deviate further than the measured one. This implies that location predicate evaluation
cannot be computed in advance. In order to address the first issue, Yufei et al. [20] pro-
pose a Monte Carlo based approach. This method generates inputs randomly, performs
a deterministic computation using the inputs and aggregates the results of the individ-
ual computations into the final result. But it is relatively accurate only if the sampled
points are sufficiently large. This is because, the computation of probability is based on
the sampling, the result of this approach is close to the actual value only if there are
enough number of samples (i.e., at the order of 106 in their experimental study). Even
worse when considering the second problem, in the moving object database, Equation
(1) needs to be computed within the reasonable amount of time because the satisfy-
ing condition of location predicate changes as the position of o is constantly updated.
Also, because the size of uncertainty region grows as time elapses after the last loca-
tion update, it requires the continuous evaluation of the specified location predicates.
Therefore, we need to reduce the cost of computation of po as much as possible.

Our proposed approach is to find the upper and lower bounds of the region to be
evaluated, essentially identifying two regions: (i) the first, called Rmin, is the region
that guarantees the correctness of the location predicate evaluation if the location es-
timate is within this region, and (ii) the second, called Rmax, is the region where any
location measure outside of this region is guaranteed to have no probability to satisfy
the given predicate. Once these regions are found, the cost of location predicate eval-
uation process is significantly reduced because it requires simple location containment
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test to evaluate the predicate correctness for most of location measures instead of ex-
pensive computation of Equation (1). More specifically, instead of computing po by
using Equation (1) for all the location measures, we take the following steps:

1. Those objects which are located outside of Rmax are filtered out from the candidate
set for examining their satisfaction for the given predicate;

2. Among the objects located within Rmax, we do not need to evaluate po of those
objects located within Rmin because it is guaranteed to have po ≥ pc;

3. po needs to be computed only for those objects located in Rmax − Rmin. In order
to minimize the cost of po evaluation, our objective is to minimize the area size of
Rmax −Rmin.

We discuss how to generate Rmax and Rmin while minimizing Rmax − Rmin.
Specific probability distribution such as uniform distribution is considered to find Rmax

and Rmin.
The rest of the paper is organized as follows. Section 2 introduces preliminaries

of the paper. In Section 3, we present an access control model where the concept of
uncertainty is embedded. Section 4 introduces our novel concept of Rmax and Rmin

under specific probability distribution such as uniform distribution and presents our
algorithm to handle imprecise access requests. Related work is presented in Section 5.
Section 6 concludes the paper with some suggestions for future work.

2 Preliminaries

In this section, we describe the uncertainty model of moving objects and present an
overview of our system architecture in a mobile environment.

2.1 Uncertainty of Moving Objects

According to [13], in the mobile network environment, no technology is available that
ensures precisely the exact user locations. Thus, a position of a moving object, instead
of a single location point, is rather specified with a range, called uncertainty region. The
uncertainty is caused by the sampling error and the measurement error [17].

Sampling Error: It is unrealistic to obtain the current location of the moving objects
continuously under the existing location sensing technologies and database technolo-
gies, and the position is collected at discrete instances of time such as every few sec-
onds instead [17]. The solid line in Figure 1 represents the projected movement of a
moving object in one dimensional space (x axis) and time (t axis). Linear interpolation
is used to project positions between two consecutive location updates: the sampled po-
sitions become the end points of single line segments, and the entire polyline (i.e., solid
line) represents the projected movement of the object. However, this approach brings
the error due to the position estimation methods of moving objects within any single
line segment except the end point. For example, in Figure 1, the dashed line shows the
actual locations of the object between t0 and t5. After the location is updated, because
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the position of the moving object is unknown until the next location update, the actual
location can be anywhere within the so called uncertain region.
Measurement Error: Location sensing techniques determine the accuracy and the
quality of the location measurements. Pfoser et al. [17] propose that given a loca-
tion measure x = (µx1 , µx2) in 2-dimensional space, the error in a positional GPS
measurement can be described by the bivariate normal distribution where the mean
(or variance) of the distribution is the measured location of the coordinate system (or
σ = σx1 = σx2), and the covariance is 0. More specifically, a positional GPS measure-
ment is described by

fo(x) =
1

2πσ2
e−

(x1−µx1 )2+(x2−µx2 )2

2σ2 (2)

This implies that the distribution in the x1-x2 plane is circular, and within the range of
±σ of the mean, 39.35% of the probability is concentrated. Depending on the location
sensing techniques, the value of σ can be determined. Given σ1 < σ2 with the same
location measure, it is obvious that the location measure involved with σ2 would involve
more measurement error. Liu et al. [15] use two performance metrics for measurement
error:

– Accuracy is the degree of closeness between the estimated location and the true
location.

– Precision is the distribution error between the estimated location and the true loca-
tion. In other words, it measures how consistently the system measures the given
location.

For example, HORUS [26, 24] has the accuracy of 2m and the precision of 90% within
2.1m [15], and the maximum measurement error level can be specified as 2m + 2.1m =
4.1m with 90% certainty.

Due to the above errors, the system does not have users’ precise positions, and the
user can be anywhere in an uncertainty region.

Definition 1 (Moving Object Uncertainty). Given a set of moving objects O, uncer-
tainty of a moving object o ∈ O in the d-dimensional data space D is conceptually
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described by (i) a d-dimensional uncertainty region, denoted by o.ur and (ii) a PDF f ,
denoted by fo(x) where x ∈ D is the d dimensional location.

Notice that f(x) ≥ 0 for any point x ∈ D and
∫

o.ur
fo(x)dx = 1. Also, fo(x) = 0

if o is located outside of o.ur. We use loc(o) to denote the last update location of o
in the database. Uncertainty region is often represented with a circle with uncertainty
threshold r, which is determined by

r = merror + vmax · |tc − tu| (3)

where merror is the measurement error level of location sensing technologies, vmax

is the maximum speed, tc is the current time, and tu is the last update time. In other
words, the circle with radius r is the region that a user can be possibly located after the
last location update. Figure 2 illustrates such an example. Observe that merror refers
to the measurement error and vmax · |tc − tu| refers to the sampling error. Since the
PDF of an uncertain object is often unavailable explicitly, a set of samples are drawn or
collected in the hope of approximating the PDF [16]. However, in some applications,
it would make sense to use the specific PDF f for specifying the uncertainty region.
For example, Wolfson et al. [19] propose that the object location follows the Gaus-
sian distribution over the uncertainty region. Also, uniform distribution is used in many
application scenarios [17, 21] to represent an uncertainty region.

2.2 System Architecture Overview

We assume the system in a mobile environment comprises of the following components:

Location Server (LS): The main objective of LS is to enforce access control policies
in order to protect the important resources. Location information can be maintained by
either LS itself or another trusted third party such as a mobile service provider. The cur-
rent location of moving objects are stored and updated accordingly in order to provide
most up-to-date location information to a service requester. If LS maintains the loca-
tion information, users’ mobile devices directly provide such information via wireless
communication periodically, the installed sensors can approximate it. For example, the
Active Badge [1] detects the location of each user in a building. Each individual carries
a device called, badge, which is associated with the identifier of the user. A building is
equipped with sensors detecting positions of badges. A person’s location is determined
by using an active badge which emits a signal every 15 seconds.

Requester: A requester subscribes to a service in order to gain access to the resources.
In a mobile environment, there are two types of resources that a requester can gain ac-
cess to: static resources (e.g. repository room or printer) and mobile resources (location
of vehicles). For example, consider a work environment where all the documents can
only be accessed by employees only while they are physically located in the office. Sim-
ilarly, requester can be either static or mobile. For example, when a mobile requester
submits an access request to the documents in the repository, LS checks the physical
location of the requester, and only if the subject is within premises of the office, he is
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given an access. However, in some cases, the location of requestors is always fixed. For
example, an emergency message (e.g., reverse 911) need to be delivered to students’
mobile devices by the university police office, only while the students’ are on campus.

Under our framework, LS is responsible for enforcing security policies. More specif-
ically, when a user (mobile or static) submits an access request, the LS searches relevant
security policies that are applicable to the submitted access request. If a location pred-
icate is included in a relevant policy, location information is either provided by the LS
(if the location information maintained by the LS) or retrieved from the trusted location
service provider. The provided location measures should compute the inherent uncer-
tainty of provided location measures (discussed in Section 2.1). After evaluating the
policies, the LS returns answers to the requester.

3 Location-Based Access Control Model under Uncertain
Location Estimates

In this section, we introduce a location-based access control model suitable for moving
object data with inherent uncertainty by extending the GSAM [4, 5]. An access con-
trol rule, in general, is specified on the basis of three parameters, 〈s, o, p〉 which states
that s is authorized to exercise privilege p on resource o1. However, this basic access
control rule lacks specification power to include moving object data since an access
control rule should be capable of specifications based on spatiotemporal attributes of
both subjects and resources that are functions of time. In the following, we extend the
basic authorization to accommodate this.

Definition 2 (Access Control Rule). An access control rule is a triple of the form 〈se,
re, pr〉 where se is a subject expression that denotes a set of authorized subjects, re
is a resource expression that denotes a set of authorized resources, and pr is a set of
privilege modes that denotes the set of allowed operations.

In this paper, we use P to denote the set of access control rules stored in the LS.
Given an access control rule α ∈ P , se(α), re(α) and pr(α) denote the set of subjects
satisfying subject expression, the set of resources satisfying resource expression, and
the set of privileges, respectively, of α. Also, α(Rr) and α(Rs) denote the authorized
region specified in se(α) and re(α), respectively. In the following, we discuss these
concepts in detail.

Definition 3 (Subject Expression). A subject expression is a triple of the form 〈R, sc,
ue〉 where R is the role to which the subject belongs, sc is the location predicate, called
scene, which can be associated with a set of geospatial and temporal extents, and ue is
an uncertainty expression associated with a scene.

Similar to subject expression, a resource expression includes (i) an object type t which
evaluates the membership of the object in categories, or values of properties on meta-
data, and (ii) location predicate with uncertainty expression.

1 ‘Object’ is more general term to specify o, but in order not to confuse with moving objects, we
specify o as resources throughout the paper.
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Definition 4 (Resource Expression). A resource expression is a triple of the form 〈t,
sc, ue〉 where t the object type to which the resource belongs, sc is a location predicate,
called scene, which can be associated with a set of geospatial and temporal extents,
and ue is an uncertainty expression associated with a scene.

In this paper, we assume the formalism developed in [5] to specify R and sc in a
subject expression. Due to space limitations, we do not review the details. In short,
R refers to a role in RBAC with roles organized as a hierarchy, and sc is a concep-
tual event or region that can be mapped to a set of bounding boxes represented with
〈label, lt, lg, h, w, [tb, te]〉 where label is a descriptive scene name, 〈lt, lg, h, w〉 de-
notes latitude, longitude, height and width of a bounding box covering a geographic
area of the scene during temporal period between tb and te

2. An object type o in an
object expression can be organized into a hierarchy similar to a role hierarchy. In [5],
only geospatial objects are considered, but it can be extended to support other types of
objects as well. Both subject expression and object expression can also contain more
complex static predicates or expressions other than roles if necessary.

An uncertainty expression ue is a logical expression denoting uncertainty level of
the corresponding scene in both se and re. As we have discussed in Section 2.1, any
location measure stored in the database includes inherent uncertainty.

Definition 5 (Uncertainty Expression). Given α ∈ P and a finite set of scenes S =
{sc1,sc2,· · · ,scm} used in se(α) or re(α), an uncertainty expression, denoted as ue(α),
is defined as follows:

– If sci is a scene, op ∈ {=, 6=, <, >,≤,≥}, and pc is a real number in the range
from 0 to 1, sci op pc is a ue.

– If ue1 and ue2 are two uncertainty expressions, ue1 ∧ ue2, ue1 ∨ ue2, ¬ue1, and
(ue1) are ue.

Although we allow any logical operator (i.e, =, 6=, <,>,≤,≥) for specifying ue,
we particularly focus on ≥ operator in this paper since it plays an important role to
prune out moving objects (either subjects or resources) that do not satisfy the uncer-
tainty threshold specification (i.e., pc). Evaluation of scene (location predicate) results
in the following form [result set, timeout] stating that each element in the result set
includes a moving object and its corresponding confidence level, and every element in
the result set exceeds the specified uncertainty threshold level in the corresponding un-
certainty expression. More specifically, the confidence value of each object o, denoted
as po, is compared with the predetermined value of threshold in ue, denoted as pc, and
those objects whose confidence level is greater than the threshold are included in the
result set. Although [3] requires two thresholds for accepting or rejecting the evalua-
tion, the request is granted only if the confidence level is above the upper threshold.

2 Actually, sc corresponds to the inarea() location predicate in [2]. In this paper, we mainly
focus on this type of predicate evaluation because other location predicates introduced in [2]
is a special case of the proposed approach. For example, in case of velocity, it is the special
case of the proposed approach with one dimensional space, and thus, the proposed approach
is general enough to evaluate other location predicates.
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Therefore, without loss of generality, we only require one threshold for evaluating loca-
tion predicates. Also, the timeout represents the time validity of the result. This timeout
takes into account that location values may change rapidly, even during policy evalua-
tion. After it is expired, scene must be reevaluated to guarantee the correctness of the
evaluation since the location measures are constantly updated.

– α1 = 〈{operations dept(x)}, {truck(y), New York City(y), New York City≥ 0.7},
{track}〉: This rule states that the operations department can track the locations of
dispatched trucks that are currently located within New York City with greater than
70 % confidence.

– α2 = 〈{Security manager(x), server farm room(x), server farm room = 1.0},
{mobile network(y)}, {read ∧ write }〉: This rules states that all security mangers
who are currently located within the server farm room with confidence level of
100% can read or write the mobile network data.

– α3 = 〈{Supervisor(x), office building(x), office building ≥ 0.8}, {employee(y),
office building(y), office building ≥ 0.9}, {locate} 〉: This rules states that all su-
pervisors who are currently located within the office building with confidence level
greater than 80 % can locate their employees who are also currently located within
the building with greater than 90 % confidence level.

The access control rules α1, α2, α3 refer to SM, MS, and MM type respectively.
Each access control rule has its own uncertainty level specified for location predicates.
We consider that the network configuration in a server farm room in α2 is the most
highly sensitive to security because configuration must be performed according to the
highest security standards. Therefore, 100% of location confidence should be guaran-
teed to do such a job. Accessing the locations of employees in the office building is
considered less critical but still to be handled in a highly secured environment and to be
granted only to selected personnel, according to the laws and regulations in force [2].
Finally, we consider tracking dispatched trucks for operational purposes as the lowest
critical to security.

4 Security Policy Evaluation of Uncertain Location Samples

In this section, we present our proposed approach that evaluates access control poli-
cies efficiently. Then, our solutions considering certain reasonable assumptions are de-
scribed.

4.1 Proposed Approach

Our approach is to find two regions: (i) the first region, called Rmin, is the region that
guarantees the correctness of the location predicate evaluation if the location estimate
is located within this region, and (ii) the second region, called Rmax, is the region
where any location measure located outside of this region is guaranteed to have no
probability to satisfy the given predicate. Formally, given an authorized region R =
[a1, b1] × [a2, b2] × · · · × [ad, bd] ⊆ D where ai < bi for i = 1, 2, · · · , d, we want
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to find cin, cout ≥ 0 such that Rmin := [a1 + cin, b1 − cin] × [a2 + cin, b2 − cin] ×
· · · × [ad + cin, bd − cin] (ai + cin < bi − cin for i = 1, 2, · · · , d) and Rmax := [a1 −
cout, b1+cout]× [a2−cout, b2+cout]×· · ·× [ad−cout, bd+cout] (ai−cout < bi+cout

for i = 1, 2, · · · , d) where ∀o ∈ O, min(po) ≥ pc if loc(o) is contained in Rmin and
max(po) ≤ pc if loc(o) is contained in D −Rmax.

Figure 3 illustrates Rmin and Rmax. In case of Rmin, the original authorized region
R is reduced to Rmin by cin in every dimension so that if any location measure loc(o)
that is stored in the last update is contained within Rmin, we can guarantee that po ≥ pc.
Therefore, in case of o1, it is guaranteed to have po1 ≥ pc because loc(o1) is located
within Rmin. Similarly, any location measure loc(o) outside of Rmax is guaranteed to
satisfy po < pc. For example, o2 is located outside of Rmax, i.e., loc(o2)is contained
in D − Rmax, and thus, po2 < pc holds. However, we do not know how the result
of location predicate evaluation for any location measure located in Rmax − Rmin.
Therefore, in this case, we have to manually compute po for any o ∈ O located within
this region, i.e., we should evaluate po3 in order to see if po3 ≥ pc holds. This example
illustrates that it is important to have Rmax − Rmin as small as possible. In other
words, our objective is to compute the minimized value of cin and cout and therefore,
the number of computations for Equation (1) is minimized as well.

Obviously, the main benefit of our proposed approach is that the cost of location
predicate evaluation process is significantly reduced once Rmin and Rmax are com-
puted because it requires simple location containment test to evaluate the predicate’s
correctness for most of location measures instead of expensive computation of Equa-
tion (1). Throughout the paper, we restrict our discussion on 2-dimensional space for
its easiness to illustration. However, it is simple to extend to a higher dimensional space.
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4.2 Uniform Distribution Case
Here we discuss how to compute the value of cin and cout to find corresponding Rmin

and Rmax when uncertainty region is approximated with square under the assumption
of uniform distribution.

Approximation of Uncertainty Region: Suppose a security policy is evaluated over
a moving object o ∈ O in 2-dimensional data space D. For example, o is one of the
resources (or subjects) in SM (or MS) type of policies while o can be both resources
and subjects in MM. Also, an authorized region R is specified in either se or re or both.
In case of a circular shape of o.ur centered at (µx1 , µx2) with radius r (µx1 , µx2 ≥ 0),
its PDF fo(x1, y1) (x1, y1 ≥ 0) is defined as

f(x1, x2) =
{

g(x1, x2) if(x1 − µx1)
2 + (x2 − µx2)

2 ≤ r2

0 otherwise (4)

where g(x1, x2) is a probability distribution such as uniform or bivariate normal distri-
bution. Then, po is defined as

po =
∫ min(b1,µx1+r)

max(a1,µx1−r)

∫ min(b2,µx2+
√

r2−(x1−µx1 )2)

max(a2,µx2−
√

r2−(x1−µx1 )2)

f(x1, x2) dx2 dx1 (5)

However, it turns out that even with the uniform distribution, the evaluation of Equation
(5) is very expensive. We can use square instead of circle for representing an uncertainty
region for computing Rmin and Rmax. Figure 4 illustrates that we use two squares to
approximate the circular shape of uncertainty region. For example, in case of Rmin, we
can use a rectangle whose circumcircle passes through all the vertices of it: the inner
square with edge’s size= 2a where a = r√

2
because the radius of the circumcircle is

the same as the radius of the polygon as shown in the figure. This is because we want
to have the minimum value of po for objects located within Rmin satisfy po ≥ pc.
Then, the size of area(R ∩ o.ur) is getting smaller, implying that po is getting smaller
compared to the original value of po. Given an uncertainty region o.ur with circle shape
where the center is (µx1 , µx2) and the radius of r, the corresponding rectangle becomes
[µx1 − r√

2
, µx1 + r√

2
]× [µx2 − r√

2
, µx2 + r√

2
].

In case of Rmax, we want to have ∀o ∈ O po ≤ pc satisfied. Thus, we want to find
a rectangle whose incircle is o.ur, illustrated with an outer rectangle in Figure 4. Then,
the area(R ∩ o.ur) is getting larger, implying that po is also getting larger. Because the
incircle’s radius is the apothem of the rectangle, the corresponding rectangle becomes
[µx1−r, µx1 +r]× [µx2−r, µx2 +r] when the uncertain region’s circle with the center
(µx1 , µx2) and the radius of r.

Now, we are ready to discuss how to compute the value of cin and cout to find corre-
sponding Rmin and Rmax under the uniform distribution assumption. We represent the
uncertainty region as square where each side’s width is 2r without loss of generality for
simple representation. Under the uniform distribution assumption of uncertainty region
which is represented with rectangular shape,

po =
area(o.ur ∩R)

area(o.ur)
(6)
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where area() returns the area of the given region.

Finding Minimal cin: Let w and h be the width and height of o.ur ∩ R, respectively,
implying area(o.ur ∩R)= w · h. In order to find the minimized value of cin, consider
the case where po is minimized but still satisfies po ≥ pc, i.e., for all oi located within
Rmin, mini(poi) ≥ pc is satisfied. In this case, we can set m = min(w, h) without loss
of generality. Then, from Equation (6), the inequality m2

area(o.ur) ≥ pc holds, implying
(r+cin)2

πr2 ≥ pc since m = r + cin when po is minimized. Because we want to find
the minimum value of cin, we can set cin = max(r(

√
πpc − 1), 0). Therefore, Rmin

is computed by shrinking R by cin in each dimension. One thing to notice is that we
cannot fix the value of cin in advance because the size of uncertainty is dependent on
the elapsed time after the last update as illustrated in Section 2.1.

Finding Minimal cout: In order to find the minimal value of cout, consider the case
where po is maximized while still satisfying po ≤ pc. Let w and h be the width and
height of o.ur∩R. Observe that po is maximized when w = 2r and h = r−cout or vice
versa.3 In this case, area(o.ur∩R) = 2r(r−cout). Then, the inequality 2r(r−cout) ≤
pcπr2 holds from Equation (6), which implies cout ≥ (1 − 1

2πpc)r. Because we want
to find the minimum value of cout, we can set cout = max((1− 1

2πpc)r, 0).

Example 1. Given R = [10, 20] × [10, 20], pc = 0.4, and r = 1, cin and cout become
cin = 0.1270 and cout = 0.3717. Thus, Rmin is [10.1210, 19.8790]×[10.1210, 19.8790],
and Rmax = [9.6283, 20.3717]× [9.6283, 20.3717].

Figure 5 and Figure 6 show the experimental results of cin and cout for various
values of pc and r respectively. As Figure 5 illustrates, the value of cin is increased
while the value of cout is decreased with respect to the increasing value of pc when r
is fixed as 1. In case of cin, this is expected because in order to have Rmin guarantee
the correctness of the given location predicate evaluation, the size of Rmin should be

3 This is because of an implicit assumption of the condition cout ≤ r since we want to have
area(Rmax) ≤ area(R).
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smaller (or cin is increased) as pc is increased. However, the size of Rmax gets smaller
(or cout gets smaller) as the value of pc is increased, which is also expected because
higher threshold value implies that smaller number of objects satisfy this threshold.
Figure 6 illustrates that both cin and cout is increased with respect to the increasing
value of r when pc = 0.4. This is because both cin and cout has the positive relationship
with r in the formulae.

4.3 Evaluation of Imprecise Access Requests

The imprecision of location measures implies that given α ∈ P , either se(α) if location
predicate is included, or re(α), if location predicate is included, cannot be evaluated
deterministically. Instead, it is natural to assign a probability value to the requester’s
answer to access request results. This approach is similar to uncertain databases [22]
where each object in the query results is associated with the probability value such as
(oi, pi) where oi is the object and pi is the quantification of probability that oi satisfies
the query.

Definition 6 (Imprecise Access Request). An imprecise access request (IAR) is the
form of 〈user id,re, action,pq〉 where user id is the identifier of the user who sub-
mits the request, re is a resource expression, action is the requested action, and pq is
the probability threshold that the probability quantification (pi) of each resource that
evaluates re be true must satisfy (i.e., pi ≥ pq must holds).

Given an IAR q, user id(q), re(q), action(q), pq(q) will denote the user, the ac-
tion, the set of resources evaluated by the resource expression, and pq of q. The result
of IAR is a set of resources that are allowed to gain access to and their quantification
probability pi is greater than or equal to pq . Given an IAR, LS evaluates P to find all
the relevant rules P ′ ⊆ P that are applicable to the requester. Then, we need to find if
∃α ∈ P ′, the objects specified by re(α) contains each u specified by re(q). Algorithm 1
describes the detailed IAR processing by utilize of the proposed Rmin and Rmax.

5 Related Work

Incorporating location information for access control is not a new concept. Atluri and
Chun [4] propose an access control model suitable to geo-spatial data. Similarly, Bertino
et al. [9] extends the RBAC model to support location-based conditions, called GEO-
RBAC, which can deal with mobile data. However, these models do not consider un-
certainty within the model, and thus, the access control decision does not guarantee the
correctness of the evaluation. There are also several access control models that support
protecting people location information in the context of ubiquitous or pervasive comput-
ing environment [12, 14]. However, these approaches are different from our approach
because they focus on preventing location information from leaking to unauthorized
entities by introducing the concept of trust. Actually, Ardagna et al. [3] address the
representation and evaluation of location-based access control systems with uncertainty
considered, but it does not discuss efficient evaluation of access control requests.
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Algorithm 1 IAR Processing
1: Input: a set of authorizations P and IAR q
2: Output: a set of authorized objects O′ ⊆ O where for each oi ∈ O, pi ≥ pq(q).
3: for each α ∈ P do
4: if q is MM or MS then
5: retrieve the uncertainty region o.ur of user id(q) from the LS
6: compute Rmax and Rmin from α(R)
7: if loc(o) is contained inRmin then
8: Oc ← Oc∪ re(α)
9: else if loc(o) is contained in D −Rmax then

10: do nothing
11: else if po ≥ pc then
12: Oc ← Oc∪ re(α).
13: end if
14: else
15: if se(α) includes user id(q) then
16: Oc ← Oc∪ re(α)
17: end if
18: end if
19: end for
20: if q is SM or MM then
21: Compute Rmax and Rmin from α(Rr)
22: Range query of resources located within Rmin, denoted as Oc1

23: Range query of resources location within Rmax −Rmin, denoted as Oc2 .
24: O′← result of set intersection operation of Oc1 and Oc

25: O′′← result of set intersection operation of Oc2 and Oc

26: for each o ∈ O′′, remove it from O′′ if po < pc

27: return O′ ∪O′′

28: else
29: O′← result of set intersection operation of Oc and re(q)
30: return O′

31: end if

Regarding the uncertainty, Wolfson et al. [23] introduce a cost based approach to
determine the size of the uncertainty area. A formal quantitative approach to the aspect
of uncertainty in modeling moving objects is presented in [17]. However, the authors
limit the uncertainty to the past of the moving objects and the error may become very
large as time approaches now. Trajcevski et al. [21] introduced a set of spatiotemporal
range queries that apply the uncertainty in traditional range queries. Cheng et al. [10] are
the first to formulate the uncertain data retrieval, and contrary to the case of traditional
data, uncertain data retrieval involves probabilistic quality with the query results. The
work in [11] develops the notion of x-bounds, and based on this concept, index-based
access methods, called the probability threshold index for one-dimensional uncertain
objects. Tao et al. develop a multi-dimensional access method, called the U-Tree [20]
which extends [11] to multi-dimensional space.
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6 Conclusions and Future Work

In this paper, we presented a solution to enforce access control policies suitable for
a mobile environment with considering location uncertainty. Our proposed solution
includes the uncertainty-embedded authorization model, efficient enforcement algo-
rithms, and handling user requests. Our proposed Rmin and Rmax can effectively filter
out most of the objects from the candidate answer so that evaluation of expensive com-
putation is greatly reduced.

Several open issues still remain. A particularly interesting issue is how to create an
index structure for authorizations in order to achieve efficient search process of relevant
authorizations given an access request. Most of the currently available authorization
enforcement techniques search all the authorization base to find relevant authorizations,
which is not efficient obviously. Although there are some work for this direction such
as [6, 7, 8, 25], no work has considered uncertainty issue. We would like to develop
enforcement algorithms based on the proposed index structure by utilizing the concepts
of Rmin and Rmax.
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