
The Interval Revocation Scheme for Broadcasting
Messages to Stateless Receivers

Anna Zych, Milan Petkovíc, and Willem Jonker

Philips Research, Eindhoven, The Netherlands
anusiek@gmail.com, {milan.petkovic,willem.jonker }@philips.com

The Broadcast Encryption methods, often referred to as revocation schemes, allow
data to be efficiently broadcast to a dynamically changing group of users. A special
case is when the receivers are stateless [2, 1]. Naor et al. [2] propose the Complete
Subset Method (CSM) and the Subset Difference Method (SDM). Asano [1] puts forth
two other methods, AM1 and AM2, which use public prime parameters to generate
the decryption keys. The efficiency of broadcast encryption methods is measured by
three parameters: (i) message size - the number of transmitted ciphertexts; (ii) storage
at receiver - the number of private keys each receiver is required to store; and (iii) key
derivation time - the computational overhead needed to access the decryption keys.

LetN = {u0, ..., uN−1} be the set ofN receivers andR ⊂ N be a group ofr users
whose decryption privileges should be revoked. The aim of a revocation scheme is to
allow a transmission of a messageM to all users in such a way, that any useru ∈ N \R
can decrypt the message correctly, while even a coalition consisting of all members of
R can not decrypt it.

We propose a new revocation scheme for transmitting secret messages to stateless
receivers. In comparison to other schemes, our scheme improves private storage to one
key per receiver and the size of the message to the number of revoked receiversr,
while the time needed for deriving a key is of order of a logarithm of the number of
all receiversO(log N). We push the storage requirements to the public space ofN2

parameters that are needed to derive the keys. We provide the comparison of CSM,
SDM, AM1 and AM2 methods with our method in Table 1.

Table 1.Performance of methods in [2, 1]

CSM [2] SDM [2] AM1 [1] AM2 [1] Our method

Message sizer log N
r

2r − 1 r(
log N

r
loga

+ 1) r(
log N

r
loga

+ 1) r

Storage at rec. log N log2 N
2

1 log N
log a

1

Key der. time - O(log N) O((2a−1−1) log N
log a

) O(2a−1 − 1) O(log N)

A typical revocation scheme (compliant to the framework provided in [2]) defines a
collection of subsetsX = S1, ..., Sw, Sj ⊆ N . Each subsetSj is assigned a long-lived
secret keyKj . Each useru ∈ Sj should be able to deduceKj from secret information
assigned to her during the initiation phase. DeducingKj however should be infeasible
for any coalition of users{u1 . . . ut} ⊂ N \ Sj . Given a revoked setR, the remaining
usersN \ R are partitioned intoSi1 , . . . , Sim so thatN \ R =

⋃m
j=1 Sij and a ses-

sion keyK is encryptedm times with (hash values) ofKi1 , . . .Kim . Such header is
broadcasted together with the content encrypted with the session key. In the scheme’s

2

initiation phase, every receiveru is assigned private informationI[u], which allows to
computeKj for each groupSj such thatu ∈ Sj .

Thus, a particular scheme is specified by the collection of subsetsX , a method to
assign the keys to each subset of the collection, a method to cover non-revoked receivers
N \R and a method that allows each useru ∈ Sj to compute her keyKj from I[u].

We propose here the interval revocation scheme. An intervalI ⊂ N is a subset ofN
containing consecutive elements:I[i, j] = {u(i mod N), u(i+1 mod N), ..., u(j mod N)}
For example forN = 6 interval I[2, 5] = {u2, u3, u4, u5}, but intervalI[2, 1] =
{u2, u3, u4, u5, u0, u1}. The size of an interval is|I[i, j]| = j − i + 1 mod N . In-
terval I[i, i + s − 1] of sizes can be split uniquely into two intervals of sizep s

2q as
follows: I[i, i + s− 1] = I[i, i + p s

2q− 1] ∪ I[i + p s−1
2 q, i + s− 1] (1).

We define collectionX as the collection of all intervals onN . Based on (1), each
interval I ∈ X of size s can be uniquely split intoIleft, Iright ∈ X of size p s

2q.
Furthermore, any two intervals never share the same set of children. A digraph repre-
senting the child relation forN = 8 is presented in Figure 1, restricted to intervals of
size1, 2, 3 and4. Let R = {ui1 , ui2 , ..., uir

} ⊂ N be the set of revoked receivers.
The cover ofN \ R consists of all intervals between revoked receivers. We have:
N \R ⊂ I[ir +1, i1−1]∪⋃r−1

j=1,ij+1>ij+1 I[ij +1, ij+1−1], and we define the cover
as the set of intervals from this sum. Thus, the size of the cover is at mostr = |R|.

�� �� ��� ��� �� �� �	��������������

���� ���� ���� �	
�

������ �
����

���� ���� ��	� �
��

������ ������ ����	� ���	
� ��	
�� �	
���

����� ����� ���	� �	
������� ����� ��	
� �
���

Fig. 1. Example of a digraph restricted to intervals of size1 . . . 4.

We apply the Diffie - Hellman (DH) key exchange protocol for key derivation. We
label each intervalI ∈ X with its private keySI and its public keyPI . The key of
interval I is a shared key obtained by applying the DH protocol on the private and
public keys of its childrenIleft and Iright, treating children as the key exchanging
parties. To derive a key of a descendant interval, a receiver needs his own secret key, as
well as the public keys of the “other” children in the path to the target interval. Receiver
ui needs to store only the secret keySI assigned to intervalI = I[i, i]. The number of
operations needed to derive one key from another isO(log N).

Given the achieved results, the direction for future research is to find an assignment
of public parameters that can be generated efficiently in on-the-fly manner. This would
allow to release the public space requirement for our scheme.
References

1. Tomoyuki Asano. A revocation scheme with minimal storage at receivers. InASIACRYPT ’02:
Proceedings of the 8th International Conference on the Theory and Application of Cryptology
and Information Security, pages 433–450, London, UK, 2002. Springer-Verlag.

2. Dalit Naor, Moni Naor, and Jeffrey B. Lotspiech. Revocation and tracing schemes for state-
less receivers. InCRYPTO ’01: Proceedings of the 21st Annual International Cryptology
Conference on Advances in Cryptology, pages 41–62, London, UK, 2001. Springer-Verlag.

