
From Business Process Choreography to
Authorization Policies

Philip Robinson1, Florian Kerschbaum1, and Andreas Schaad2

SAP Research, Karlsruhe, Germany1

philip.robinson@sap.com

florian.kerschbaum@sap.com

SAP Research, Sophia Antipolis, France2

andreas.schaad@sap.com

Abstract. A choreography specifies the interactions between the re-
sources of multiple collaborating parties at design time. The runtime
management of authorization policies in order to support such a specifi-
cation is however tedious for administrators to manually handle. By com-
piling the choreography into enhanced authorization policies, we are able
to automatically derive the minimal authorizations required for collabo-
ration, as well as enable and disable the authorizations in a just-in-time
manner that matches the control flow described in the choreography. We
have evaluated the advantage of this utility in a collaborative engineering
scenario.

1 Introduction

We present a system architecture and algorithm for automatically gen-
erating, installing and enforcing authorization policies that correspond
to an agreed specification of inter-organizational collaboration. The plan-
ning and execution of inter-organization collaboration is known as busi-
ness process choreography [1, 7, 16], with the specification document being
referred to as a choreography description. From a choreography descrip-
tion we were able to automatically derive the corresponding authorization
policies. Moreover, authorizations (which are determined based on autho-
rization policies) are enabled only for the duration of their corresponding
interactions in the running collaborative business process. We ensure that
an organization is quickly prepared to fulfill its obligations in a collab-
orative business process, while obeying the least privileges principle. In
collaborative business there is a need to reduce both the risk of losing
market credibility, due to slow response, and the risk of exposing valu-
able information. This challenge is presented in collaborative engineering,
where multiple organizations collaborate on a short term basis within a
specific project, in order to exchange design objectives, detect and resolve



conflicts, as well as generate new ideas and design options [2]. In order to
support collaborative business processes such as collaborative engineer-
ing, new methodologies, specification languages and tools [1, 7, 10, 16] are
being produced, alongside which we position and evaluate our work.

The paper continues with a preliminary introduction to business pro-
cess choreography, authorization and collaborative engineering, outlining
the problem domain. Secondly, we present the system architecture, el-
ements and component interactions for deriving authorization policies
from a choreography description. This is followed by the details of the
authorization policy generation algorithm, and a discussion of its merits.
We conclude with a discussion of the solution and related work.

2 Preliminaries

2.1 Business Process Choreography

Business process choreography is the description of how multiple organi-
zations coordinate their activities in a collaborative business process. A
choreography may have been agreed to, but it is then the job of individual
organizations to provide authorized access to the systems and resources
that will do the actual specified work. The basic building blocks of a
choreography are interactions, such as web service invocations across or-
ganizations, and internal actions within one organization. [16] explains
this as a three stage process:

1. create a common understanding of the inter-organizational workflow
(or collaborative business process) by specifying a shared public work-
flow,

2. partition the public workflow over the organizations involved, and
3. for each organization, create a private workflow which is a subclass of

the respective part of the public workflow.

The choreography description therefore defines the public workflow, which
acts as a means of combining the private workflows of multiple organiza-
tions into one global control-flow.

The Web Services Choreography Description Language (WS-CDL) [7]
is an emerging, XML-based standard for describing message-based inter-
actions between web services. We however only discuss the elements that
were important for generating authorization policies. For a more complete
introduction to WS-CDL see [1, 7]. WS-CDL offers an element for encod-
ing a web service call, referred to as an <InterAction> element. This con-
tains references to the source <roleType> and the receiver <roleType>.



In addition the expected internal actions of participant organizations are
denoted using the <SilentAction> and <NoAction> tags. As control-flow
elements the WS-CDL specification offers sequential <Sequence>, parallel
<Parallel>, branching <Choice> and looping <WorkUnit> composition,
which we take into consideration when specifying dependencies between
generated authorization policies.

2.2 Authorization and Access Control

Having described and agreed to a choreography, each collaborating or-
ganization still needs to provide the appropriate authorizations that al-
low the agreed interactions to be executed. Furthermore, authorizations
should only be activated according to the control-flow of the choreogra-
phy. An authorization is defined as a triple 〈subject s, object o, action a〉,
stating that a subject s can perform action a on object o [4, 12]. Mes-
sages originating from a subject and targeted at an object are composed
of a corresponding triple. Access control is then the process of intercept-
ing every incoming message before it reaches its target, and determining
whether or not the request can be granted [12]. The decision requires
policies to be specified that consider the message plus the conditions un-
der which it was received. A generic authorization policy is then specified
as 〈s, o, a, q〉, where q is a set of conditions that must evaluate to true
in order for the 〈s, o, a〉 triple to be a valid authorization. A general ar-
chitecture for access control therefore consists of a policy decision point
(PDP), which makes the authorization decisions based on installed autho-
rization policies, and a policy enforcement point (PEP), which intercepts
all incoming messages and enforces the authorizations or denials resulting
from policy decisions [12]. A message also consists of a triple 〈s, o, a〉, such
that its authorization is evaluated according to a policy, whose 〈s, o, a〉
triple matches the corresponding elements of the message. In order for
an authorization decision to be made, the PEP first authenticates the
identity of s in all intercepted messages, then forwards to the PDP. The
PDP then makes decisions concerning if 〈s, o, a〉 is valid given q, a set of
condition variables.

3 Collaborative Engineering

Having discussed the background of our work (choreography and autho-
rization), we now consider this in the context of a specific application



domain. We have selected collaborative engineering, as the issues of man-
aging short-term, inter-organization control flow arise, along with the re-
quirement to provide minimal access to sensitive documents and services.
Collaborative engineering is a way in which multi-functional development
teams coordinate their communication and work in order to improve the
process of developing a new product. It involves different partners with
different perspectives on the engineering tasks [2]. We draw an example
from the aerospace engineering domain, as depicted in figure 1, where
they use grid and web-service technology in order to share resources [3].
The engineering team partners, computational resources and data are
not part of the same administrative domain. Therefore each organization
maintains and administers its own PDP, PEP and services it provides,
as well as the Policy Generation Component (PGC) introduced in sec-
tion 4. Each partner has a right to protect access to the resources they
own, yet must still maintain their obligations to complete the business
process. The team partners involved are discussed with respect to their
authorization and collaboration requirements:

– Initiator, in this case the Aircraft Company, specifies the overall re-
quirements for the product to be designed during the project. The
series of design documents need to be version controlled and accessed
only for specific project tasks. Leaking the design documents could de-
stroy the opportunity to gain a market or patent. The Initiator adds
and removes partners in the project based on their performance or
changes in the environment (e.g. if a partner becomes a competitor).

– Storage Providers are contracted to store, version control and main-
tain access to large design documents, analysis reports and simulation
data. A Storage Provider must ensure that access to shared resources
does not violate the rules of the document owners nor the availability
requirements of the contract.

– Engineers are contracted to provide models that meet the Initiator’s
requirements specification, using their own methods and tools. The
Engineers may maintain models on their local machines or use the
computational facilities of a Storage Provider.

– Analysts are contracted to provide models of the environment where
the product is to be operational and therefore make predictions about
how the final product will perform in a live environment. Their access
is limited to very specific specification and design documents.

In order to coordinate the activities between the different specialist
teams, a series of notifications and requests are interchanged, to which



Fig. 1. Scenario for Collaborative Engineering in the Aerospace Domain

particular response actions occur. The notifications and requests are mes-
sages that state that an action is to be performed or an explicit attempt by
a subject to perform an action on a resource such as read, write or delete.
Coordination and authorization are critical throughout the lifetime of the
project, with respect to confidentiality, availability and performance. For
example, analysts should only be able to access design documents when
a draft had been agreed in an earlier interaction, otherwise extra effort
must be invested in organizational conflict analysis and resolution [2].
The partners may change during the lifetime of the project, such that
the authorizations of old partners should be immediately removed. The
required guarantees are that resources are available when they need to be
available and only to whom they need be available.

4 System Architecture

The PDP and PEP components form the basic trusted computing base
of our system architecture, but we introduce an additional component for
authorization policy generation called the PGC. In addition to generating
authorization policies, the PGC is also responsible for installing them on
the PDP. Each of these components are assumed to be trusted, as there
is no intermediate policy decision that intercepts their interactions and
they are assumed to be in the same administrative domain. We do not



cover the administration authorization model of these components in this
paper.

– Policy Generation Component (PGC): interprets a choreography and
generates authorization policies. In addition to the choreography (WS-
CDL), the service description (WSDL) containing the end point refer-
ences (EPRs) of the target objects, as well as the public key certificates
(PKCs) of the selected parties in the choreography are received.

– Policy Enforcement Point (PEP): intercepts requests to the resources
and extracts authorization queries of the form 〈s, o, a〉, authenticates
the subject of the message msg and queries a PDP for an authorization
decision. Only authenticated and authorized messages msgauth are
allowed to reach targeted resources. Typical examples of where PEP
functionality is implemented are network routers, switches, firewalls,
proxies, OS filesystem interfaces and database interfaces.

– Policy Decision Point (PDP): makes authorization decisions based on
〈s, o, a, q〉 policies that have been generated by a PGC. A PDP receives
a triple 〈s, o, a〉 from the PEP and outputs either an authorization
msggrant or denial message msgdeny.

– Resources: the objects to which access is requested, as agreed to in
the choreography. We assume that there is a standard means of repre-
senting and exposing the interface to these resources as services, such
as WSDL, but the issues of interoperability and interconnection are
not discussed in the paper.

4.1 Component Interactions and Assumptions

Before describing the component interactions, there are some assumptions
that we make with respect to a particular instance of the environment
within which they interact. Firstly, we assume that the PEP, PDP and
PGC are all in the same administrative domain as the resources being
protected. Each project partner’s PEP is therefore situated in a logical
DMZ (demilitarized zone), while the PDP, resources and PGC are in
a protected domain. Secondly, we assume that there is a PKI (Public
Key Infrastructure) in place that allows each project partner to validate
the certificates of each other. The “Authority” in figure 2 represents a
standard PKI Certificate Authority (CA). Finally we assume that each
partner maintains a project management system that at least provides in-
formation concerning which projects are currently active. The component
interactions are represented in figure 2 and discussed below:



Fig. 2. Sequence diagram of component interactions

1. The Initiator (i.e. Aircraft Company) must first be issued a public-key
certificate (PKC) from an authority, asserting its identity and claim to
be the initiator of a project with a unique universal identifier PRJid.
The certificate has the format: Cert(subject = Initiator, keyinfo =
PKInitiator, extension = Claim(isInitiator, PRJid), issuer = PKAuthority)

2. The identities of all partners must also be validated by an authority,
as well as the claim that they have been selected to play a role rname in
the project PRJid. Cert(subject = Partner, keyinfo = PKPartner,
extension = Claim(rname, PRJid), . . ., issuer = PKAuthority)

3. The Initiator then sends the WS-CDL (choreography), WSDLs (ser-
vice interfaces) and PKCs of all selected partners to the PGC of
each partner, using the initiator certificate as its authentication to-
ken. Recall that the PGC is not directly accessible from outside the
network, such that there must be an authorization in place that al-
lows s = Initiator, o = PGC, a = Add, under the conditions q :
isActive(Initiator, Partner, PRJid).

4. The PGC derives the authorization policies and installs them on the
PDP, given that the above condition q holds. This allows adminis-
tration to simultaneously confirm participation in the collaborative
business process and determine valid authorizations.

5. The Initiator issues an initiation message to all partners, indicating
that the project is in the operation state. A PGC of partners im-
plementing our proposed architecture must simply enable the first
authorizations according to the choreography.



6. Incoming message requests are intercepted by each partner’s PEP. We
assume that there is mutual authentication between the communicat-
ing parties. If the authentication is successful, the PEP extracts the
authorization-relevant information (〈s, o, a〉) and uses this to query
the PDP.

7. The PDP evaluates the request by the PEP and returns its decision
(msggrant or msgdeny). Every time a policy decision is made, the PDP
updates its internal state with the next set of authorizations to be
installed.

8. The PEP drops all msgdeny and forwards all msggrant to the appro-
priate resource, e.g. analysis service.

9. The actual resource is then invoked using only authorized messages
(requests and invocations) forwarded by the PEP.

We now proceed to describe the algorithm for implementing the policy
derivation.

5 Control-Flow Aware Authorization Policy Derivation

Our policy derivation algorithm uses the control flow of the choreogra-
phy in order to minimize the time a policy is enabled. In addition to
extracting only the relevant <InterAction> elements and enabling them
over the life-time of the choreography, we also use the control-flow of the
choreography to trigger the enabling and disabling of the policies, given
the following extensions to the basic specification.

5.1 Extended Authorization Policies

We extended the specification of authorization policies in order to develop
a mechanism for supporting the control-flow of a choreography. Instead of
representing the run-time control-flow (and monitoring it with a second
component) we have chosen to represent the static control-flow and extend
the policy enforcement and decision with two mechanisms to track the
control-flow. Each authorization policy is annotated with two additional
fields, one set of policies that are enabled and one with policies that
are disabled after the policy has been successfully matched. Let lenable =
{policy−id1, policy−id2, . . ., policy−idn} be the set of policies to enable
and ldisable = {policy − id1, policy − id2, . . ., policy − idm} be the set of
policies to disable. Additionally we store the policy − id of each policy
as an unique identifying integer and the state of the policy. The state
of a policy can be either enabled or disabled. Disabled policies are not



considered when making a policy decision, but they have already been
created and can be activated on-demand, i.e. q : enabled(policy − id).
This allows us to create all policies initially and then reference them by
policy-id for enabling and disabling. The life-cycle of a policy is depicted
in figure 3. Furthermore, a policy might be enabled and disabled multiple
times during the execution of a choreography. Summarizing a policy is
a 7-tuple of 〈policy − id, s, o, a, lenable, ldisable, state〉 where s, o and a are
the usual authorization policy elements mentioned above.

Fig. 3. Policy State Model

The sets lenable and ldisable are evaluated by the PDP after a policy has
been successfully matched. I.e. the PDP evaluates all enabled policies in
order, comparing them to the request, and, on the first policy matching
subject s, object o and action a it allows access. All our policies are grant
policies specifying an allowed access. The PDP has an implicit deny policy
that is used for all unmatched requests. Since we only have grant policies
there is no conflict specified by our policies. Furthermore, if all policies
are generated by the policy generator they are non-overlapping. After a
policy has been successfully matched to the request the PDP processes
the set lenable of this policy and enables all policies in the set, followed by
the set ldisable of this policy disabling all policies in the set. This implies
that a policy might disable itself after successful matching. Our algorithm
ensures that no policy appears in both sets (lenable and ldisable), such that
the order of evaluation causes no conflict.

5.2 Automatic Policy Generation

In this section we will describe the algorithm to populate the enable
and disable sets of each policy. WS-CDL offers four activities for control-
flow: <Sequence>, <Choice>, <Parallel> and <WorkUnit>. <Sequence>,
<Choice> and <Parallel> are self-explaining and work like expected.
It is important to note that <Parallel> introduces parallelism into the



control-flow which complicates the analysis. <WorkUnit> encapsulates an-
other activity and makes its execution conditional. The enclosed activity
may be executed 0 to n times depending on the guard and repetition
conditions.

As we are interested in deriving authorization policies, the only activ-
ity that results in a (cross-domain) access to a resource is <InterAction>.
Each <InterAction> represents an access from one party to another (i.e.
no multi-party access).

We first present an overview of our algorithm and then detail its im-
portant steps. The algorithm steps are as follows:

1. Verify all partner certificates carry the role extension with the chore-
ography role name. We place the canonical name of the subject of the
certificate as the subject s into the authorization policy. The PDP can
then match the subject of the certificate presented for authentication
to the subject s in the authorization policy.

2. Derive control-flow with all intermediate nodes (i.e. XML elements,
like <Choice> and <Parallel>) from the parsed choreography de-
scription.

3. Filter all <InterAction> elements that do not have oneself as a target,
i.e. remove all <InterAction> elements that do not result in a local
access (and therefore a local authorization policy).

4. Remove all XML nodes that do not contain <InterAction> elements
by directly linking predecessors and successors. (Exception: Empty
nodes in <Parallel> are simply removed.)

5. Create policies with empty lenable and ldisable sets in disabled state.
6. Compute lenable and ldisable set for each policy from the choreography.
7. Install policies on a partner’s PDP and enable start policy (or policies)

on request.

The derivation of the control-flow is straightforward from the syntactic
constructs of WS-CDL. We store the predecessor and successor informa-
tion in a two-dimensional array in the activity. Let predi(N) denote the
set of sequential predecessors of node N for i = 1, . . . , p where i is the
i-th parallel activity, i.e. one of each pred0(N), pred1(N), . . ., predp(N)
has occurred before N . Similarly let succi(N) denote the set of sequen-
tial successors for the i-th parallel activity, i.e. one of each succ0(N),
succ1(N), . . ., succq(N) will occur after N . Let pred(N) and succ(N)
denote the union of all parallel activities, i.e. pred(N) =

⋃p
i=0 predi(N)

and succ(N) =
⋃q

i=0 succi(N). Let predN (M) and succN (M) denote the
set of predecessors and successors, respectively, of M of that activity that



contains N . Due to the syntax of <Parallel> and <Choice> in WS-CDL
this set is unique. We use the same notation when applying predecessor
and successor operators to sets, i.e. the operator is applied to each ele-
ment in the set removing duplicate results. E.g. succ(pred(N)) denotes
the set of all possible sequential and parallel siblings of N (including N
itself).

The creation of policies in step 5 requires the subject, object and ac-
tion information for each policy. We analyze each <InterAction> for this
purpose. The subject is the canonical name as extracted from the cer-
tificate for the role (attribute fromRole in the <participate> element).
The object is the web service EPR from the WSDL file referenced in the
<behavior> element of the <roleType> with the name of the operation
attribute of the <InterAction>. The action is the method of the web ser-
vice that is called and, in our convention, is referred to as the operation
attribute. With this information we construct a draft of each policy, such
that all policies are disabled, but have a policy-id assigned. Each such
policy is associated with a node in the control-flow and, after the removal
of empty nodes, each node has one policy associated with it. I.e. we can
use control-flow nodes and policies interchangeably.

The set ldisable is the set of all alternative sequential choices, i.e. for
each node N

ldisable = succN (pred(N))

Note that this includes N itself, i.e. by default each policy is disabled after
it has been activated unless the control-flow allows it to be reactivated.

The set lenable is the set of all successors of a node N

lenable = succ(N)

Since a node may be contained in both ldisable and lenable, e.g. a loop
to itself (in a <WorkUnit> activity with repetition), we postprocess both
sets and remove all elements that are contained in both sets from the sets.

φ = ldisable ∩ lenable

ldisable = ldisable \ φ

lenable = lenable \ φ

The policies are now ready for deployment and we only need to enable
the start policies to allow the choreography to start.



6 Discussion and Related Work

An authorization is said to be passive with respect to a given condition,
if for all possible values of the condition’s variables the authorization
remains unchanged. Conditions include tasks performed, time of day,
resource availability and various other properties that can be used to
describe a system’s current operational state and behavior. The implica-
tions of “active”, “just-in-time” or “need-to-know” authorizations have
been discussed by various authors including [5, 15, 17]. We consider the
authorizations generated from a choreography as active with respect to
project membership, role, task and control flow. These therefore maintain
the membership of a group and enforce access controls on resources and
functions that are reserved for active and qualified partners of the group.
When an organization needs to enforce an access control on a resource
reserved for usage in a project, it is therefore important to have a means
of validating the membership of the subject with the project, otherwise
residual access could be granted to a requesting subject that is no longer
an active partner.

6.1 Active, Task and Membership-based Access Control

TBAC [15] has similar foundations as RBAC [11], with the goal of mod-
elling authorizations at the enterprise and application level as opposed to
restricting them to the system and resource level. TBAC authorizations
are granted and revoked based on when tasks are scheduled and per-
formed, such that permissions to objects should be granted to subjects
only for the duration of a task that necessitates the subject perform-
ing some action on the object. TBAC’s authorization policy extensions
are two fields for activating or deactivating authorizations at runtime. A
TBAC authorization has the form 〈s, o, a, usage u, authorization-step as〉.
Each task in a workflow is associated with an authorization-step, rep-
resenting the workflow’s protection state when the task or activity is
being performed. An authorization such as 〈s, o, a〉 is only valid when
contained in the current authorization-step. Secondly, authorizations are
conditioned by a usage or validity count u, specifying the number of times
the authorization can be granted in the workflow. The authorization-steps
are similar to our lenable and ldisable sets, but seem to assume that paral-
lel activities will conclude at the same time. Our approach therefore of-
fers a finer granularity with the enabling and disabling of authorizations.
Secondly, TBAC must be integrated with a workflow engine in order to



function, creating a large trusted computing base beyond standard PEPs
and PDPs.

TMAC (Team-based Access Control) [14] is a related framework to
TBAC and RBAC, but adds the feature of authorization enabling based
on team existence and membership. That is, a subject s may be assigned
a role rt containing a set of permissions 〈o, a〉, but these roles are only
active when a relevant team T exists and s plays role rt in T . The au-
thorizations are deactivated either by removing the role assignment or
the team assignment. A project is a team of multiple participants, such
that we achieve a similar membership-based access control activation and
deactivation. We however support a finer-grained activation and deacti-
vation mechanism, such that we achieve dynamic authorization based on
role, task and membership.

6.2 Generation of Access Controls

[8] also addresses the idea of adding workflow states to the protection
state variables of a system. They use Petri nets as the basis for modeling
workflows, as the theoretical and practical understanding of Petri nets to
modeling information and control flow are well established. The activities
of a workflow correspond to the transitions in a Petri net, while the work-
flow state, data-stores and control flow are represented by the places and
markings. Their extensions to the authorization policies are quite simple,
as they express an authorization as 〈s, o, a, task〉, stating that a subject
s is allowed to perform action a on object o if q : isScheduled(task).
They also define a simple read/write {r, w} policy that is associated with
incoming and outgoing data of a task. That is, if a subject s is assigned
to a task taski with incoming data oi and outgoing data oj , then s should
have read ’r’ rights to the data-store of oi and write ’w’ rights to the
data-store of oj . The claim of their work is that given the appropriate
Petri net model of a workflow, by applying the 〈s, o, a, task〉 scheme and
the {r, w} policy the required authorizations can be derived and enforced
at runtime of the workflow. They envisioned the enforcement being done
by a workflow engine as tasks were scheduled. Again this is tight coupling
of functionality and too large a trusted computing base. A workflow en-
gine is already a complicated piece of software that must maintain state,
manage concurrencies, handle exceptions and perform compensation ac-
tions. We believe that their simple derivation scheme could work, but
suggest decoupling authorization and workflow management. [6] achieve
this decoupling by using task-based capabilities, which are assigned to
subjects that have specific roles in the workflow. A PDP maintains a



matrix of tasks and objects, where the cells specify actions that holders
of task-based capabilities are allowed to perform on these objects. Our
architecture and algorithm manage to capture a combination of these
concepts.

[9] have taken advantage of the existence of maturing standards for
defining business processes and workflows, such as the Business Process
Execution Language for web services (BPEL4WS). They have presented
a conceptual integration of BPEL with RBAC in order to provide an au-
thorization concept to accompany BPEL. They have defined a conceptual
mapping between their interpretations of the meta-models of BPEL and
RBAC. While what we achieve is also a transformation or mapping, this is
still only a first step when considering the requirements of collaborative
engineering projects that need to meet tough deadlines. The enabling,
disabling and removal of these derived authorizations must be supported
with respect to the control flow of the process from which they have been
derived.

7 Conclusions

We have described an architecture and algorithm for deriving authoriza-
tion policies from a business process choreography. This enables partners
in e.g. a collaborative engineering project to focus on agreeing on the
protocol for how they collaborate and still have the assurance that their
authorization requirements will be addressed. Our approach has been im-
plemented and is being applied in the context of a larger research project
– TrustCoM [13] – for security in collaborative business processes, which
includes collaborative engineering as a main test case, and also considers
legal and business elements that influence the validity and control flow
of collaboration. Future work will therefore consider how these can be
included into our framework, as well as handling faults and exceptions.

8 Acknowledgements

The developments presented in this paper were partly funded by the Euro-
pean Commission through the IST programme under Framework 6 grant
001945 to the Trustcom Integrated Project.

References

1. A. Barros, M. Dumas, and P. Oaks. A Criticial Overview of the Web Services
Choreography Description Language. BPTrends, 2005.



2. M.R. Danesh and Y. Jin. An Aggregated Value Model for Collaborative Engineer-
ing Decisions, Proceedings of the 5th ASME Design for Manufacturing Conference,
2000.

3. A. Gould, S. Barker, E. Carver, D. Golby, M. Turner, BAEgrid: From e-Science to
e-Engineering, in Proceedings of the UK e-Science All Hands Meeting, 2003.

4. M. Harrison, W. Ruzzo, and J. Ullman. Protection in Operating Systems. Com-
munications of the ACM 19(8), 1976.

5. R. Holbein, S. Teufel, and K. Bauknecht. The use of business process models for
security design in organisations. In Proceedings of SEC, 1996.

6. M. Kang, J. Park, and J. Froscher, 2001. Access control mechanisms for inter-
organizational workflow. In Proceedings of the 6th ACM Symposium on Access
Control Models and Technologies, 2001.

7. N. Kavantzas, D. Burdett, G. Ritzinger, T. Fletcher, Y. Lafon, and C. Bar-
reto. Web Services Choreography Description Language Version 1.0. Available at
http://www.w3.org/TR/ws-cdl-10/, 2005.

8. K. Knorr. Dynamic access control through Petri net workflows. In Proceedings of
the 16th Annual Computer Security Applications Conference, 2000.

9. J. Mendling, M. Strembeck, G. Stermsek, and G. Neumann. An Approach to Ex-
tract RBAC Models from BPEL4WS Processes. In Proceedings of the 13th IEEE
international Workshops on Enabling Technologies, 2004.

10. P. Robinson, Y. Karabulut, and J. Haller. Dynamic Virtual Organization Man-
agement for Service Oriented Enterprise Applications. In Proceedings of IEEE
CollaborateCom, 2005.

11. R. Sandhu, E. Coyne, H. Feinstein, and C. Youman. Role-Based Access Control
Models. IEEE Computer 29(2), 1996.

12. P. Samarati, S. de Capitani di Vimercati. Access Control: Policies, Models, and
Mechanisms. Lecture Notes in Computer Science 2171, 2001.

13. T. Dimitrakos, S. Ristol, and M. Wilson. TrustCoM: A Trust and Contract Man-
agement Framework for Dymamic Virtual Organisations. ERCIM News Magazine,
2004.

14. R. Thomas. Team-Based Access Control (TMAC): A Primitive for Applying Role-
Based Access Controls in Collaborative Environments. In Proceedings of the 2nd
ACM workshop on Role-basedAccess Control, 1997

15. R. Thomas, and R. Sandhu. Task-Based Authorization Controls (TBAC): A Fam-
ily of Models for Active and Enterprise-Oriented Autorization Management. In
Proceedings of the IFIP 11th International Conference on Database Securty, 1998.

16. Wil M.P. van der Aalst, Mathias Weske. The P2P Approach to Interorganizational
Workflows, Lecture Notes in Computer Science, 2001

17. W. Yao, K. Moody, and J. Bacon. A Model of OASIS Role-Based Access Control
and its Support for Active Security. Proceedings of 6th ACM Symposium on Access
Control Models and Technologies, 2001.


