
Policy Transformations for Preventing Leakage
of Sensitive Information in Email Systems

Saket Kaushik1, William Winsborough2, Duminda Wijesekera1, and
Paul Ammann1

1Department of Information & Software Engineering, George Mason
University, Fairfax, VA 22030, U.S.A,

{skaushik|dwijesek|pammann}@gmu.edu
2Department of Computer Science, University of Texas at San Antonio,

San Antonio, TX 78249-0667 USA, wwinsborough@acm.org

In this paper we identify an undesirable side-effect of combining different email-
control mechanisms for protection from unwanted messages, namely, leakage of re-
cipients’ private information to message senders. The problem arises because some
email-control mechanisms like bonds, graph-turing tests, etc., inherently leak infor-
mation, and without discontinuing their use, leakage channels cannot be closed. We
formalize the capabilities of an attacker and show how she can launch guessing attacks
on recipient’s mail acceptance policy that utilizes leaky mechanism in an effort to avoid
unwanted mail.

The attacker in our model guesses the contents of a recipient’s private informa-
tion. The recipients’ use of leaky mechanisms allow the sender to verify her guess.
We assume a constraint logic programming based policy language for specification
and evaluation of mail acceptance criteria and present two different program trans-
formations that can prevent guessing attacks while allowing recipients to utilize any
email-control mechanism in their policies.

Keywords: Application layer security, inference attacks, information leakage chan-
nels, secrecy

1 Introduction
Email, a widely popular communication medium, is plagued with several problems
like delivery of unsolicited commercial or fraudulent messages, lack of authentication
of message senders, inability to ensure integrity and secrecy of message content,etc.
Several solutions have been proposed to counter these problems and many have been
incorporated into the delivery mechanisms. However, there exists a class of problems
that has not received much attention yet, which is the problem of protection of recipi-
ents’ sensitive information. It is surprisingly easy to uncover information that recipients
may consider sensitive, like recipient maintainedblacklist or whitelist. Not only can

1



this lead to security breaches; it can also jeopardize the defenses against unwanted mes-
sages. In this paper, we formalize this problem and a new attack technique on policy
based evaluation, which is a counterpart to dictionary attacks on cryptographic proto-
cols [3]. As a solution we also provide a policy transformation technique to prevent
attacks on sensitive information.

Leakages can occur in many ways. For instance, simpleaddress harvestingattacks
through the Simple Mail Transfer Protocol (SMTP [15]), the default email delivery
protocol, are easy to construct. In this attack, a malicious sender attempts delivery to
a preconstructed list of possible recipient addresses, and recipient mail server replies
help her to identify which addresses are assigned to users [13]. Contrary to the SMTP
protocol recommendations, mail servers can prohibit such feedback, thus implementing
a blanket protection policy against harvesting attacks. More fine-tuned, policy-based
schemes for feedback control are also possible [8].

Because email-control techniques in use at a mail server can send feedback out
of band with SMTP, controlling SMTP feedback to senders is not enough to protect
recipient’s private data. For example, graph-turing tests for ensuring human-initiation
of email messages [12] respond to incoming messages with a puzzle that can only be
solved by humans. Senders can, thus, infer that mail address belongs to a real user and
being protected against unwanted mail. This signal also informs the sender that the
sent message was able to overcome the recipient’s Bayesian filters. This knowledge
can further help a malicious sender in propagating unwanted emails in future. Apart
from the efficacy of filter rules, a recipient or a domain may wish to protect a lot of
other private data, like their email behavior, the set of their email acquaintances,etc.

In this paper, we identify two types of email-control mechanisms,viz., leaky mech-
anismslike monetary bonds, acknowledgement receipts,etc., andsensitive mechanisms
like white-lists, i.e., the set of senders from whom a recipient always accepts emails,
blacklists, i.e., the set of senders from whom the recipient does not wish to receive
messages, filters,etc. A leaky mechanism is defined as an email-control mechanism
that, when used, informs the sender whether his or her message was accepted by the
recipient or not. Whereas, a sensitive mechanism is defined as an email control mech-
anism that uses recipient’s private information to decide whether to accept a message
or not, but does not disclose any information to the sender. However, if these two types
of mechanisms are used in combination, disclosure of recipient’s private information
is possible and it is the security goal of this paper to prevent such disclosures. Readers
may be familiar with leakages due to well-crafted web addresses and images embedded
within a message that provide automatic acknowledgement receipts. In section 2 we
provide additional details on such leakages. Mechanisms like blacklists, filters,etc.,
are sensitive because of the nature of the information they control and because their
knowledge can help a malicious sender to bypass the control they provide.

The abundance of email-control solutions and the need for automation of several
aspects of user’s email agents have led to the use of policies that allow flexible con-
trol over the behavior of local email systems. Such policies are easily constructed
through end user input (e.g., simple user feedback allows Gmail to display or not dis-
play embedded images,etc.) and through explicit administrator level policies, leading
to considerable automation of repetitive tasks. However, because the email system is
highly automated, there exists a potential for confidential information to be leaked un-

2



intentionally. Even though it is not guaranteed that using a means to leak information
will reveal information, however, the probability of leakage of sensitive information,
when using leaky and sensitive mechanisms in combination, is non-zero. In particular,
schemes that allow sharing acceptance policies to stop undesirable messages earlier
in the transmission process (see [8]) compound the problem. Armed with this knowl-
edge, an attacker can simply send a large volume of messages and extract sensitive
information from the behavior of the feedback channel.

Our modeling of an attacker assumes basic capabilities of computing unfold/fold
transformations [16], computing Clark completion of predicate definitions, and the
ability to generate a large number of messages. Though, in the worst case analysis, the
attacker need send only aO(n) number of message, wheren is the size of the policy.

1.1 Overview of our approach

A survey of recent proposals and initiatives for controlling unwanted messages give
sufficient evidence of an eventual move towards policy-controlled email systems. Ex-
isting implementations exhibit varied policy evaluation strategies, from complete se-
crecy (like silent dropping of messages identified as unwanted during Bayesian filter-
ing [18]) to requests for additional information (like human verification tests [12]).
Bringing all strategies under a single umbrella enables, both, sharing and hiding of ac-
ceptance criteria. Clearly, sanitization of acceptance policies is a prerequisite to com-
municating them upstream. However, it is our view that such a (non-trivial) task cannot
be entrusted to end users. The only option that remains is to automatically ‘strengthen’
or sanitize policies susceptible to leakage; a non-trivial problem addressed here.

Our first step in policy sanitization is to distinguish leaky mechanisms and sensitive
information in the policy syntax. Next, we provide a syntactic transformation of the
original policy into two zero-information leakage policies and show that they don’t leak
protected information. The first transformation simply drops all references to sensitive
information. The resultant policy, called necessary policy, identifies a set of criteria
thus must be satisfied, assuming best case scenario with respect to sensitive informa-
tion. Similarly, the second transformation constructs a sufficient policy that assumes
worst case scenario with respect to sensitive information and identifies messages that
can still be accepted. The necessary policy can be shared without risk of leakages,
while sufficient policy is designed to be applied at only at the recipient end – thereby
achieving complete secrecy in policy evaluation.

1.2 Our contribution

The main contributions of this paper include what is to the best of our knowledge the
first formal analysis of confidentiality problems in the context of emails, and a novel
solution to protect sensitive information from attacks. In summary:

• We develop a logical formalism for expressing and solving the problem of leak-
age of private information due to the use of leaky mechanisms.

• We define a new attacker model with the attacker being capable of computing
Clark completionof programs and applyingunfold/fold transformationsin addi-
tion to the ability of generating messages. We show that this is enough to uncover
information considered sensitive by the message recipient.

• We describe a new type of information leakage attack on email systems due to
the combination of email-control mechanisms.

3



• We develop two policy transformation schemes, namely, necessary and sufficient
policies that, when used in tandem, can prevent the leakage of sensitive email
information.

The rest of the paper is organized as follows. In section 2 we provide some mo-
tivating examples of information leakage attacks. Formal model of security policies
for email are presented in section 3, followed by the attacker model in section 4. In
section 5 we discuss the transformation algorithm and necessary and sufficient policy
transformations that can prevent leakage of information, followed by the related work
(section 6) and the conclusion (section 7).

2 Examples
We focus on automatic leakage of information through the email system. A simple
leakage scenario is one where specially crafted messages can lead to recipients di-
vulging private financial information to attackers. Such attack techniques are termed
as ‘phishing’ and are beyond the scope of this paper. Several types of information may
be regarded as valuable by different classes of message senders. For example, a large
set of valid email users or the strength of message filtering rules of an email domain
would be valuable to bulk emailers. For these and other reasons senders may want to
know if their messages were read by the recipient, even if the recipient does not wish
to release an acknowledgment receipt. We provide some basic examples below how
the system could be manipulated to yield such confirmations.

2.1 Direct disclosure

SMTP, the default email protocol, allows leakage of information, as discussed earlier.
In table 1 we list some of the reply codes that can be used for gaining confirmation of
valid/invalid email addresses and is an example of direct leakage. In addition, email-
control schemes using protocols layered on top of the SMTP protocol can also result
in leakage of information. For instance, graph-turing tests [12] generate a human-
solvable challenge for incoming messages, and accept messages only if the answer is
correct. However, issuing a challenge confirms that the recipient address is in use.
As these disclosures are made through feedback provided in the protocol, they can be
prevented by modifying the behavior of SMTP state machine. In the rest of the paper,
we assume that these disclosures can be prevented using policy-based control schemes
for feedback control [8] and don’t investigate them further.

Reply Code Meaning Confirmation provided
251 User not local; will forward to〈email address〉 Forwarding address
450 Mailbox unavailable Invalid address
452 Insufficient system storage Valid address
550 Mailbox unavailable Invalid address
551 User not local; try〈email address〉 Forwarding address
553 Mailbox name not allowed Invalid address

Table 1: Leakage through SMTP reply codes

2.2 Disclosure through leaky mechanisms

Mechanisms that provide feedback beyond the SMTP reply codes are called leaky as
they can reveal information even if all SMTP feedback is prevented. For instance, bond

4



seizure [10] is one such means. We characterize these leakages as follows:
• Confirmation of email address: Confirmation of email addresses is desired

(usually by bulk emailers) for increased ‘viewership’.

• Leakage of sensitive information:Validity of address is known by sender; addi-
tional private information, like contents of filter rules, reputation lists are sought.

Example 1 (Leakage through monetary bonds).Consider a simple recipient policy that
allows messages from people not on her blacklist if they attach a bond valued at least at$ a; for
all other users, a bond worth$ b (b > a) is required. We represent this policy informally next.
A formal definition of syntax is presented later.

accept −if− some ‘allow’ rule is true and all ‘disallow’ rules are false

allow −if− sender is not blacklisted and message is bonded with value a

allow −if− for all other senders message is bonded with value b> a

disallow −if− if message has an attachment with extension .scr

First, assume the sender knows that an acceptance policy uses blacklists and bonds together, but
doesn’t know the values a and b. The sender can send a large number of messages with different
bonds and analyze seizure information to deduce a and b. If on the other hand, policies are
shared, the values are already known. With this information, the sender can easily verify if an
email address he can send mail from is in the recipient’s blacklist or not – by sending as little as
only one email message with bond of value$ c, c∈ (a,b) attached. Assuming that the targeted
recipient seizes bonds for all commercial mail delivered, no seizure or seizure of bond will prove
to the sender that he is not on the blacklist or not, respectively.

3 Formal Model
We assume that each message is evaluated by a single evaluation engine, unlike other
proposals [8]. We reconcile this design decision with existing proposals by admitting
a syntax that is more general, and can be specialized according to the needs.

3.1 Syntax

Definition 1 (Constraint domain). We use finite integer domain as the constraint domain,
represented byR, that supports standard interpretation of the symbols =,6=, ≤ and≥. We
assume that non-numeric constants can be encoded in finite integer domain.

Definition 2 (Terms). Terms consist of only variables and constants. Constants are from the
setR. Tuples of terms t1, . . ., tN may be represented by

−→
t .

Definition 3 (Primitive constraint). A primitive constraint is of the form q(t1, t2) where q
is a symbol from the set{=, 6=, ≤, ≥} and t1, t2 are terms such that t1 is a variable and t2 is a
constant. We use infix notation to represent primitive constraints.

Definition 4 (Constraint). A constraint is conjunction (∧) of primitive constraints.

Definition 5 (Predicates). Predicate symbols are partitioned into three sets:RD, which are
the user defined predicates,RU , which are the system defined predicates, andRA is the set
of predicates that are guesses for predicates inRD. In particular, we assume that top level
predicate symbolsallow anddisallow∈ RD andaccept∈ RU . .

5



We treat a message as a set of facts that constrain email message headers and con-
tent to sender supplied values. For instance,Mail From: abc@xyz is encoded as
atrbFrom(abc@xyz.com) whereatrbFrom is an RD predicate. Example RD predicates
includeatrbBond – representing attached bonds,atrbAttachment representing attach-
ments,etc.Predicates required for definingallow, disallowpredicates are included in
RD, as discussed in the definition of clauses below.

Definition 6 (Private and Sensitive Predicates).Subsets ofRD predicates, represented
byP andL, form the set of private and sensitive predicates, respectively.

Definition 7 (System-defined PredicatesRU ). RU predicates are further partitioned into
following sets:
Mch For each predicatepi ∈ P , two predicate symbols, matchPi and matchNotPi of same arity

aspi, are reserved to be defined by the program. In addition for every predicate Qj 6∈ P ,
the program reserves predicate symbols QjMatchPi and QjMatchNotPi

Pes For every predicate Q, such that Q6∈ P, the program reserves a predicate symbol ‘pesQ’,
Q’s pessimistic version (defined in section 5).

Opt For every predicate Q, such that Q6∈ P , the program reserves a predicate symbol ‘optQ’,
Q’s optimistic version (defined in section 5).

Definition 8 (Atom and Literal). An atom is of the form q(t1, . . . , tn) where q is a symbol
fromRD ∪RU∪ {=, 6=,≤,≥} andt1, . . . , tn are terms. A literal is an atom (called a positive
literal) or its negation (called a negative literal).

Definition 9 (Clause, Fact and Rule).A clause is of the form H← B where H is an atom,
and B is a list of literals. A fact is a clause in which B is an empty list or a list of literals with
predicate symbols from the set{=, 6=,≤,≥}. A clause is called a rule otherwise. H atom, B, Q
literals.

Definition 10 (CLP Program). A CLP Program (simply a program) is a set of clauses. For
a programΠ and a predicate P, P∝ Π if for any rule H← B1,. . .,Bn in Π, P = Hθ or P = Biθ

(i ∈ [1,n]) for someθ.

Definition 11 (Message).A message is a set of facts

Definition 12 (Mail Acceptance Policy). A mail acceptance policy, or simply, a policy is a
pair Π = 〈ΠR, ΠD〉 whereΠR is a set of rules (ruleset) andΠD is a set of facts. The program
ΠR is required to be stratified and contain definitions of top level predicate accept and at least
one of the predicates: allow, disallow. The predicate symbol accept is always defined as

accept(−−→msg) ← allow(−−→msg),¬disallow(−−→msg)

Here−−→msg tuple represents all the variables and their bindings derived from a mes-
sage,e.g., From, To, Time, Bond, etc., would all be included in the tuple. Predicates
other thanallow, disallowmay have single variables from−−→msg tuple as arguments.

3.2 Semantics

We reuse the three-valued semantics (with constructive negation) used in [8], which
is Fages’ fully abstract semantics (TP (I)= 〈T+

P (I), T−P (I)〉) where symbols are as
defined in [6], P =Π∪ M where M is a message andI = 〈I+, I−〉 in whichI+ andI−

are disjoint sets of constrained atoms, defined next.

6



Definition 13 (Constrained atom). A constrained atom is a pair c|A in which c is a solvable
constraint, A is an atom and free variables occurring in c also occur as free in A. The set of all
constrained atoms is denoted byB
Definition 14. Immediate consequence function
T+

P (I) ={c|p(X)∈B | there exist a p(X)← d|A1, . . .,Am,¬Am+1,. . .,¬An ∈ P with local vari-
ables Y, ci|Ai ∈ I+ for i∈[1,m] and cj |Aj ∈ I− for j∈[m+1,n] such that c=∃Y(d∧∧n

i=ici) is
satisfiable}
T−P (I) ={c|p(X)∈B | p(X)← dk|Ak,1,. . .,Ak,mk , ¬Ak,mk+1,. . .,¬Ak,nk for every clause with
head p∈ P and local variables Yk, there exist ek,1|Ak,1,. . ., ek,mk |Ak,mk ∈ I− and ek,mk+1 |
Ak,mk+1,. . .,ek,nk |Ak,nk ∈ I+, such that c=

∧
k∀Yk(¬ dk ∨

∨nk
i=iek,i) is satisfiable}

Definition 15. Ordinal powers ofTP

TP ↑ 0 = ∅; TP ↑ β = TP (TP ↑ β − 1), β is a successor ordinal;TP ↑ α =
⊔

β<α TP ↑ β, in
whichα is a limit ordinal and

⊔
β<α TP ↑ β = 〈⋃β<α(TP ↑ β)+,

⋃
β<α(TP ↑ β)−〉.

A message is accepted if c| accept(−−→msg) ∈ T+
P ↑ ω where−−→msg is a tuple of head-

ers and content supplied in the message. The authors show that the decision procedure
using the presented semantics is complete [8].

Definition 16 (Extension of a predicate).Extension of a predicate p is the set ext(p)⊂
T+

P (I) such that each constrained atom in ext(p) is of the form c| p(−→x )

Space constraints prohibit us from defining Clark completion here, so we refer the
reader to Jaffar and Maher’s survey on CLP [7]; later examples can help unfamiliar
readers understand the concept better. We represent completion of a predicate p by p∗.

4 Attacker Model
An attacker is constrained to unlimited, but legal runs of the SMTP protocol. We make
following (worst-case) assumptions:

1. Form of policies used at an email domain may be known,e.g., use of blacklists,
whitelists, filters,etc. In particularΠR (rule set) may be known but notΠD (set
of facts) where contains definitions of private predicates.

2. By observing protocol runs alone an attacker cannot conclude if a message was
delivered. (Recipient may silently drop messages.)

3. Recipient acts on every delivered message, like, seizes bond for unwanted mes-
sage,etc.

4.1 Capabilities

Given a set of rulesΠ = {π1, . . . , πn}, and the set P ={q | q ∝ Π}, an attacker has
following capabilities:

1. Capability of computing Clark completion: For all q ∈ P , the attacker can
computeq∗, q’s Clark completion with respect toP.

2. Capability of unfold transformation [16]: Given a ruleπk: H ← A, B, C
where A, C⊂ P and B∈ P such that for some ruleπi and someθ such that B
= head(πi)θ, the attacker can transformπk to H← A, body(πi)θ, C (herehead
andbody functions map a rule to the atom in its head and literals in its body,
respectively). Note that variables inπi andπk are renamed apart. We represent
the fully unfolded form of a predicate q by qω.

7



3. Capability of fold transformation [16]: Given a ruleπk: H ← A, B, C where
A, B, C⊂ P such that for some ruleπi and someθ such that B = body(πi)θ, the
attacker can transformπk to H← A, head(πi)θ, C

4. Capability of message generation:An attacker can generate any number of
messages (Mi, . . . , Mn) of her choice.

(For additional information on unfold/fold transformation of logic programs the
reader is referred to [16]).

4.2 Scripting an attack

Next we show how an attack can be effected using capabilities defined above. Es-
sentially, the steps to an attack involve computing the fully unfolded form ofaccept
predicate, followed by computing its Clark completion. With this computed predicate
an attacker can design messages effectively, to verify her guesses. A sample attack is
shown next. The unfold/fold transformation belongs to NP complexity class [2], as
does the Clark completion operation. Overall, the complexity of policy attack is NP.

Example 2. We provide the formal syntax of policy in example 1 and show how an attack can
be orchestrated against it. Here,blacklist is a private predicate, whose definition (or extension)
is hidden from the attacker and atrbbond is a leaky predicate. SupposeΠR is

allow(−→m) ← ¬blacklist(Y ), atrbbond(X), X ≥ 5

allow(−→m) ← blacklist(Y ), atrbbond(X), X ≥ 10

Using the unfolding capability, accept predicate definitions can be transformed to:

accept(−→m) ← ¬blacklist(Y ), atrbbond(X), X ≥ 5

accept(−→m) ← blacklist(Y ), atrbbond(X), X ≥ 10

Next the attacker can compute Clark completion of accept definition:

∀−→m accept(−→m)∗ ↔ ∃Y1, X1 ¬blacklist(Y1), atrbbond(X1), X1 ≥ 5

∨
∃Y2, X2 blacklist(Y2), atrbbond(X2), X2 ≥ 10

An attacker is now in a position to guess parts of the extension of blacklist using following
rule:

blacklist′(Yg) ← ¬accept(−→m1), accept(−→m2), atrbbond(X1),

atrbbond(X2), X1 ∈ [5, 10], X2 > 10

Here blacklist′ ∈ RA, is defined by the attacker. The attacker can send two messages with
all facts same except the bond values. The first message (m1) is bonded with a value v∈
(5,10) and second one (m2) bonded with a value greater than 10. It is easy to see that if
Yg ∈ ext(blacklist), then the sender will get one negative and one positive verification –
c|accept(−→m1) ∈ T−P (I) and c|accept(−→m2) ∈ T+

P (I); otherwise both verifiers are positive.

8



Qu(
−→
Yu): − Q1(

−→
Y1), . . . ,¬Qv(

−→
Yv), p1(

−−→
X1,1), . . . , p1(

−−−→
Xm1,1),¬p1(

−−−−−→
Xm1+1,1), . . . ,

¬p1(
−−−−−−→
Xm1+n1,1), . . . , pt′(

−−−→
Xt′,1), . . . ,¬pt′(

−−−−−−−→
Xmt′+nt′ ,t′), c.

For each clause inΠR as shown above, add create following clauses, for each k and u, if not already
present: (withi ∈ [1, mk

′ ], j ∈ [1, nk
′ ], k

′ ∈ [1, t′])

pesQu(
−→
Yu): −QumatchP1(

−→
X1,

−→m), QumatchNotP1(
−→
X1,

−→m).
...

pesQu(
−→
Yu): −QumatchPt′(

−→
Xt′ ,

−→m), QumatchNotPt′(
−→
Xt′ ,

−→m).

QumatchPk(
−−−−→
Xmk+j ,

−→m): −pesQ1(
−→
Y1), . . . ,¬optQv(

−→
Yv), QumatchP1(

−−→
X1,1,

−→m), . . . ,

QumatchP1(
−−−→
Xm1,1,

−→m), . . . , QumatchPk(
−−→
X1,k,−→m), . . . , QumatchPk(

−−−−→
Xmk,k,−→m),

QumatchNotPk(
−−−−−→
Xmk+1,k,−→m), . . . , QumatchNotPk(

−−−−−−−−→
Xmk+(j−1),k,−→m),

QumatchNotPk(
−−−−−−−−→
Xmk+(j+1),k,−→m), . . . , QumatchNotPk(

−−−−−−→
Xmk+nk,k,−→m), . . . ,

QumatchPt′(
−−−→
X1,t′ ,

−→m), . . . , QumatchNotPt′(
−−−−−−−→
Xmt′+nt′ ,t′ ,

−→m),
−−−→
Xi,k

′ 6= −−−−−−−→
Xm

k
′+j,k

′ , c.

QumatchNotPk(
−→
Xi,

−→m): −pesQ1(
−→
Y1), . . . ,¬optQv(

−→
Yv), QumatchP1(

−−→
X1,1,

−→m), . . . ,

QumatchP1(
−−−−→
Xma,1,

−→m), . . . , QumatchPk(
−−→
X1,k,−→m), . . . , QumatchPk(

−−−−→
Xi−1,k,−→m),

QumatchPk(
−−−−→
Xi+1,k,−→m), . . . , QumatchPk(

−−−−→
Xmk,k,−→m), QumatchNotPk(

−−−−−→
Xmk+1,k,−→m), . . . ,

QumatchNotPk(
−−−−−−→
Xmk+nk,k,−→m), . . . , QumatchPt′(

−−−→
X1,t′ ,

−→m), . . . ,

QumatchNotPt′(
−−−−−−−→
Xmt′+nt′ ,t′ ,

−→m),
−−−→
Xi,k

′ 6= −−−−−−−→
Xm

k
′+j,k

′ , c.

optQu(
−→
Yu): −optQ1(

−→
Y1), . . . ,¬pesQv(

−→
Yv),

−−−→
Xi,k

′ 6= −−−−−−−→
Xm

k
′+j,k

′ , c.

Figure 1: Transformation algorithm

5 Policy transformations for privacy
To prevent an attacker from deducing subsets of recipient maintained set(s) of private
information, we propose to transform the evaluation policy such that leakage signals are
rendered useless. There are two flavors of transformation that we propose:the sufficient
policyandthe necessary policytransformation. Intuitively, the sufficient policy should
accept a message just in case the message is accepted by the original policy under
all possible definitions of the private predicates. On the other hand, the necessary
policy accepts a message forsomedefinition of the private predicates in the original
policy, hence ensuring that only messages satisfying the necessary policy can satisfy the
original policy. These policies are designed to be used in tandem,i.e., single evaluation
of original policy is replaced by the evaluation of necessary and sufficient policies.

5.1 Transformation algorithm

Transformation algorithm is discussed next. Since only those rules that use private
literals in their bodies can leak private information, the algorithm applies to such rules
and leaves others unchanged. The transformation algorithm is shown in figure 1 and

9



consists of two transformations for each rule containing sensitive predicates and is
described in detail next.

Figure 1 begins with a general Horn clause representation of rules inΠR with
meta-variables Qu, Qv and pk and−→m is the tuple of all variables used inΠR. Qu(−→y )
represents a non-sensitive literal at theuth position in a rule, and can also appear in
the head of the rule. The rule is shown to havev non-sensitive predicates in its body
and some sensitive predicatespk, for k ∈ [1, t

′
], each used positivelymk times and

negativelynk times. In other words, recursive calls and multiple calls to the same
predicate may be made in a rule,i.e., Qu may be in [Q1, Qv] or Qu1 = Qu2 for u1, u2

∈ [1, v], u1 6= u2. However,Qu cannot make recursive calls to itself through negation
or include calls such that the program dependency graph includes negative cycles, the
stratification restriction. Also, eachpk literal need not appear in the body of everyQu

clause,i.e., bothmk andnk can be equal to zero.
As shown in the figure, eachQu definition is transformed to two related predicates,

viz., pesQu andoptQu, wherepesQu is the ‘pessimistic’ version ofQu, independent
of the definition of any private predicate used in the definition ofQu, andoptQu is the
‘optimistic’ version ofQu predicate, which holds for ‘some’ definition of private pred-
icates. More precisely,optQu will hold if there existssomedefinition of private pred-
icates used in the definition ofQu, such thatQu can be shown to hold inΠ, whereas
pesQu will only hold if for all definitions of private predicates,Qu can be shown to
hold true inΠ.

It must be noted that the algorithm, as presented, does not include the details of how
transformed and non transformed rules are linked. Suppose there is a predicateQ(−→x )
in the body of a transformed clause that does not use any sensitive literals. The transfor-
mation still renames it aspesQ(−→x ) whenever it is used positively, andoptQ(−→x ) when
it is used negatively. However, the transformed versions of the definition ofQ(−→x ) are
not created since it does not use any sensitive predicates in the body. Hence we add two
rules for each such predicate, which are,pesQ(−→x ) ← Q(−→x ) andoptQ(−→x ) ← Q(−→x ).
In example 3 we present a concrete example of this transformation.

Example 3. Pessimistic and optimistic transformations.
Consider theΠR definition of predicate trusted(x,. . .,z) that uses non sensitive predicates profes-
sor(Profile), student(Profile) and bonded(B, minValue) and private predicate blacklist(XFrom)
defined inΠD:

trusted(−→x ) ← professor(XFrom)

trusted(−→x ) ← student(XFrom),¬blacklist(XFrom)

trusted(−→x ) ← blacklist(XFrom), bonded(XX-Bnd, 5)

The optimistic and pessimistic forms of the predicate trusted inΠsuf are as follows. For sim-
plicity we retain the names of other predicates (i.e., student, professor, bonded are unchanged),
however, in reality, their pessimistic and optimistic versions coincide. Also, we use trustedMB
symbol for trustedMatchBlacklist and trustedMNB for trustedMatchNotBlacklist predicate due

10



to space constraints:

pesTrusted(−→x ) ← professor(XFrom)

pesTrusted(−→x ) ← trustedMB(−→y1),

trustedMNB(−→y2)

trustedMB(−→y1) ← student(XFrom)

trustedMNB(−→y2) ← bonded(XX-Bnd, 5)

optTrusted(−→x ) ← student(XFrom)

optTrusted(−→x ) ← bonded(XX-Bnd, 5)

5.1.1 Necessary Policy

Intuitively, the necessary policy,Πnec, strips away sensitive predicates from the origi-
nal policy. The basic idea is to generate a policy where satisfaction requirements are in
terms of non-sensitive literals, while assuming the best possible scenario with respect
to the definition of sensitive predicates. This aim is achieved by the following defi-
nition of top-level accept predicate (acceptnec(−−→msg) for clarity) and while example 4
illustrates the basic idea:

acceptnec(
−→m) ← optAllow(−→m),¬pesDisallow(−→m)

Example 4. [Illustration of necessary policy]Consider a rulesetΠR where B1 and B2

are a list of positive literals with no literal belonging toP. Hence their ‘opt’ and ‘pes’ versions
coincide. Also, p∈ P

allow(−−→msg) ← B1, p(X) (1)

allow(−−→msg) ← B2,¬p(X) (2)

Applying the necessary transformation we get:

acceptnec(
−→m) ← optAllow(−→m),¬pesDisallow(−→m)

optAllow(−→m) ← B1

optAllow(−→m) ← B2

By unfolding and completing the definition of acceptnec we get (−→y1 and−→y2 are free variables in
B1 and B2 respectively)

∀−→m acceptω∗
nec(

−→m) ↔ ∃−→y1 B1 ∨ ∃−→y2 B2

This policy accepts messages depending upon the clauses of the original policy, with the change
that sensitive predicate is dropped from rules 1,2

5.1.2 Sufficient Policy

The basic idea behind this transformation is to syntactically match the uses of sensi-
tive literals in the body of rules withallow head,e.g., usepesAllow(−→m) in place of
allow(−→m). In other words, we wish toresolve awaythe uses of sensitive literals, akin
to the predicate elimination strategy proposed by Reiter [14]. The following top-level
predicate accept (acceptsuf for clarity) achieves this aim:

acceptsuf (−→m) ← pesAllow(−→m),¬optDisallow(−→m)

11



Example 5 (Illustration of sufficient policy). Consider the ruleset given by rules 1 and 2. The
sufficient transformation of rules yields the following ruleset

acceptsuf (−→m) ← pesAllow(−→m),¬optDisallow(−→m)

pesAllow(−→m) ← matchP (X), matchNotP (X)

matchP (X,−→m) ← B1

matchNotP (X,−→m) ← B2

By unfolding and completing the definition of acceptsuf we get

∀−→m acceptω∗
suf (−→m) ↔ ∃−→y1,−→y2 B1, B2

This policy accepts messages that simultaneously satisfy the bodies of clauses 1 and 2, with
private predicate stripped off from the rules.

5.2 Syntactic Properties

The syntactic properties of necessary and sufficient policies essentially state that the
predicates identified as private in the original policy do not occur in transformed poli-
cies. These follow in a straightforward manner from the transformation algorithm.

Lemma 1. Given P⊆ P such that ifpi ∈ P andpi ∝ ΠR thenpi 6∝ Πnec (resp.Πsuf ) where
Πnec (resp.Πsuf ) is necessary (resp. sufficient) transformation ofΠR.

Corollary 2. Given P⊆ P such that ifpi ∈ P andpi ∝ ΠR thenpω∗ or p do not occur in
Πω∗

nec (resp.Π∗suf ).

5.3 Semantic Properties

To show how evaluation ofΠnec andΠsuf instead ofΠR prevents sensitive leakages,
we need to show some semantic properties of the transformed rulesets. However, space
constraints don’t allow us to go into the full details of our claims, the theorems and
their proofs. Hence, we briefly describe the results informally and refer the interested
reader to a technical report [9] with complete results. However, here we state our main
theorem without its proof.

We use the following notations. The program corresponding to the original policy
is represented by P, where P =ΠR ∪ΠD ∪M , in whichM is the message being eval-
uated,ΠD is the set of private facts andΠR is a ruleset. The sufficient transformation
yields a set of rules represented byΠsuf , whereas the necessary ruleset is represented
by Πnec. AssumingΠD contains only facts constructed from private predicates, we
denote the program corresponding toΠsuf by PS , wherePS = Πsuf ∪M and the pro-
gram corresponding toΠnec by PN , wherePN = Πnec ∪M . Both these programs are
independent of the definitions of the sensitive predicates.

The main theorem involves a general relation between satisfaction of ‘optimistic’
and ‘pessimistic’ versions of any literal and the satisfaction of the literal itself. Intu-
itively, this means that whenever the pessimistic version of a predicate is true, then the
original predicate is also true, irrespective of the truth values of the sensitive predicates.
Similarly, ‘optimistic’ version being satisfied implies that there is a possible definition
of private predicates (in the set of program facts,ΠD), such that the original predicate
is satisfied.

12



Theorem 3. Given a program P =ΠR ∪ΠD ∪M , in whichΠR ∪ΠD is a policy that includes
sensitive predicatesp1 to pt defined inΠD andM is a set of facts, any literalpesQu(−→y ) in the
programPS = Πsuf ∪M or PN = Πnec ∪M , apart from theaccept(−−→msg) atom, is satisfied if
and only if for all definitions ofp1, . . . , pt Qu(−→y ) is satisfied in P, andoptQu(−→y ) is satisfied if
and only if there exists some definition ofp1, . . . , pt such thatQu(−→y ) is satisfied.

With the help of the theorem above, semantic closeness of transformations to the
original policy can be shown in a straightforward manner. That is, transformed poli-
cies are closest, semantically, to the original policy compared to any other policy that
protects recipient’s private information. Based on semantic closeness, email policies
can be partially ordered (additional details can be found in [9]) and it can be shown
that the necessary policy is the least upper bound for all policies that protect recipient’s
sensitive information, while the sufficient policy the greatest lower bound.

Protection against attacks Under the assumed capabilities of the attacker, the above
results enable us to prove certain results regarding the protection offered by the trans-
formations. We summarize when an attacker can gain sensitive information and when
the information is protected, next. (For proofs see [9]).

• The attacker can gain knowledge of sensitive information (i.e., portions ofΠD)
if she knows the original ruleset (i.e., ΠR) and messages (i.e., Mi) are evaluated
by the original policy (i.e., the programΠR ∪ΠD ∪Mi).

• Attacker’s knowledge of necessary and sufficient policy and evaluation of mes-
sages by these policies does not lead to leakage of sensitive information.

• Attacker’s knowledge of original policy and evaluation of messages by sufficient
and necessary policies will not lead to leakage of sensitive information.

6 Related Work
Cryptanalysis of private-key cryptosystems through statistical attacks, like correlation
attacks [11], aim to determine the statistical relationship between outputs and inputs
of cryptographic transformations. Zhang, Tavareset al. [19] describe a zero informa-
tion leakage between the change of output(s) and prescribed change patterns in the
inputs for protecting against correlation attacks. Our approach resembles this informa-
tion theoretic model of protection against information leakage, however, we describe
how correlation-like attacks can be mounted against sets of Horn clauses and present a
transformation that can prevent against such attacks.

Our transformation procedure resembles the predicate elimination strategy, a com-
plete resolution proof strategy for multi-predicate formulas, proposed by Reiter [14].
Essentially, this strategy involves rewriting the theory with a predicate P ‘resolved
away’. Subsequently, a set of unsatisfiable P-independent clauses can be derived if
the original set of clauses were unsatisfiable. In our approach, we propose a strategy
for ‘resolving away’ the private predicates in a given set of rules. However, our aim
here is not to detect unsatisfiability. Instead, we construct new clauses that do not leak
any discernible information to guessing attacks.

The third closely related work is of Delaune and Jacquemard [3], who give a theory
of dictionary attacks against cryptographic protocols. In their work, they claim that
if the set of possible values of the input is finite (and small), then a dictionary attack

13



(guessing attack) is only PTIME complex. They go on to give a theory of dictionary
attack by extending the classic Dolev-Yao intruder model for statistical inferences. In
our work, we adopt their attack model, and even though we require the attacker to be
able to handle a greater degree of computational complexity, the basis of launching
attacks remains the same.

Relational databases have mature techniques for both access control and inference
control. Access control protects direct access to sensitive information. In our case,
we assume that this is possible by policy specification and enforcement. Inference
control has been extensively studied in statistical databases and census data [4, 17,
1]. These approaches can be classified intorestriction-based, or restricting queries, or
perturbation-based, i.e., addition of random noises to source data. Our approach is
closer to the restriction based techniques.

In restriction based inference control schemes, one of the concerns is of an attacker
deriving protected information through aggregation of separate queries. In other words,
the protected information cannot be queried directly, but deducible from the results of
other queries. In the email domain, a query can be replaced by a message, and the
result of a query by a yes or no decision (i.e., accept or a reject). Even with a boolean
response, attackers can deduce relevant information. This is the reason why we claim
that inference attacks are easier to construct. Similar to their response, we transform
the evaluation policies, and thus reduce attacker’s capabilities to run some queries.

In summary, we have applied a well-studied problem to the context of email mes-
sages and showed that important information can be lost due to the current email de-
livery protocols and deployed mechanisms. Solutions applied to other domains are not
directly applicable to our domain, and therefore we provide a custom solution based
on program transformations, using ideas developed by researchers who have studied
similar problems in other domains.

7 Conclusion
In this paper we have identified an undesirable side effect of combining different email-
control mechanisms, namely, the leakage of sensitive information. Even though con-
fidentiality of sensitive information has been widely studied as a research problem, it
assumes a different form in the email context, because of the ease with which sensitive
information is leaked. We provide example scenarios where leakage is made possible
in two ways – using the message delivery protocol itself and using leakage channels
beyond the mail delivery protocol. Based on how these leakages may be used by an
attacker, we categorize them into two classes – automatic generation of acknowledge-
ment receipts for validating an email address and automatic generation of acknowl-
edgments for inferring private information about the recipient. As leakage channels
beyond the control of the delivery protocol can’t be closed by modifying email deliv-
ery protocol alone, preventing leakages is hard to achieve. In particular, we investigate
in detail the second class of attacks where a victim’s sensitive information is leaked.

As opposed to the classical Dolev-Yao attacker [5], we define a new attacker model
and a new attack technique. In the worst case scenario, we assume that the attacker
knows recipient’s mail acceptance criteria, but not the sensitive information maintained
by the recipient. With the abilities of computing Clark completion of normal Horn
clauses, unfold/fold transformations and generating messages, the attacker can mount

14



attacks such that sensitive information is leaked. As a solution, we provide an algorith-
mic transformation which can sanitize the combination of email-control mechanisms,
so that the leakage is plugged. We also show that the transformed policies that we
generate are ‘closest’ semantically to the original policy.

References
[1] N. R. Adam and J. C. Worthmann. Security-control methods for statistical databases: a

comparative study.ACM Computing Surveys, 21(4):515–556, 1989.
[2] E. Dantsin, T. Eiter, G. Gottlob, and A. Voronkov. Complexity and expressive power of

logic programming.ACM Computing Surveys, 33(3):374–425, 2001.
[3] S. Delaune and F. Jacquemard. A theory of dictionary attacks and its complexity. InPro-

ceedings of the 17th IEEE Computer Security Foundations Workshop (CSFW’04), pages
2–15, 2004.

[4] D. E. Denning and J. Schlrer. Inference control for statistical databases.IEEE Computer,
16(7):69–82, 1983.

[5] D. Dolev and A. Yao. On the security of public-key protocols.IEEE Transaction on
Information Theory, 29:198–208, 1983.

[6] F. Fages. Constructive negation by pruning.Journal of Logic Programming, 32/2, 1997.
[7] J. Jaffar and M. J. Maher. Constraint logic programming: A survey.Journal of Logic

Programming, 19/20:503–581, 1994.
[8] S. Kaushik, W. Winsborough, D. Wijesekera, and P. Ammann. Email feedback: A policy-

based approach to overcoming false positives. In3rd ACM Workshop on Formal Methods
in Security Engineering: From Specifications to Code (FMSE 2005), pages 73–82, Fairfax,
VA, November 2005.

[9] S. Kaushik, W. Winsborough, D. Wijesekera, and P. Ammann. Policy transformation for
preventing leakage of sensitive information in email systems. Technical Report ISE-TR-
06-05, ISE Dept, George Mason University, Fairfax, VA, May 2006.

[10] T. Loder, M. V. Alstyne, and R. Wash. An economic solution to the spam problem. InACM
E-Commerce, 2004.

[11] W. Meier and O. Staffelbach. Fast correlation attacks on certain stream ciphers.Journal of
Cryptology, 1(3):159–176, 1989.

[12] M. Naor. Verification of a human in the loop or identification via the turing test.
http://www.wisdom.weizmann.ac.il/ñaor/ PAPERS/humanabs.html, 1996.

[13] S. Petry. Port 25: The gaping hole in the firewall. InProceedings of ACSAC’02 Annual
Computer Security Applications Conference, Dec 2002.

[14] R. Reiter. The predicate elimination strategy in theorem proving. InProceedings of the
second annual ACM symposium on Theory of computing, pages 180–183, Northampton,
Massachusetts, 1970.

[15] Simple Mail Transfer Protocol. RFC 2821, Apr 2001.
[16] H. Tamaki and T. Sato. Unfold/fold transformation of logic programs. In S.-A. Tarnlund,

editor,Proceedings of the Second International Conference on Logic Programming, pages
127–138, Uppsala, 1984.

[17] L. Willenborg and T. de Waal.Statistical disclosure control in practice. Springer Verlag,
New York, 1996.

[18] W. S. Yerazunis. Sparse binary polynomial hashing and the CRM114 discriminator. In
2003 Cambridge Spam Conference Proceedings, 2003.

[19] M. Zhang, S. Tavares, and L. Campbell. Information leakage of boolean functions and its
relationship to other cryptographic criteria. InProceedings of the 2nd ACM Conference on
Computer and Communications Security (CCS’94), pages 156–165, Fairfax, 1994.

15


