
Discretionary and Mandatory Controls for

Role-Based Administration

Jason Crampton

Information Security Group, Royal Holloway, University of London
jason.crampton@rhul.ac.uk

Abstract. Role-based access control is an important way of limiting the
access users have to computing resources. While the basic concepts of
role-based access control are now well understood, there is no consensus
on the best approach to managing role-based systems. In this paper, we
introduce a new model for role-based administration, using the notions of
discretionary and mandatory controls. Our model provides a number of
important features that control the assignment of users and permissions
to roles. This means that we can limit the damage that can be done by
malicious administrative users. We compare our approach to a number
of other models for role-based administration, and demonstrate that our
model has several advantages.

1 Introduction

Role-based access control (RBAC) is an increasingly popular model for limiting
the access users have to resources provided by a computer system. A role pro-
vide a means of associating a group of users (typically corresponding to some
particular job within an organization) to some set of permissions (corresponding
to the functions and duties performed by users with that particular job).

“Administration” in the context of access control is a generic term that is
taken to mean the management of the sets and relations underpinning the access
control model. Adding users or changing the access rights associated with those
users are part of the administrative process, for example. The administration of
role-based systems using role-based principles has been less widely studied than
RBAC itself, although some important progress has been made [1–3]. A number
of important ideas have emerged from this work: RBAC96 introduces the idea
of administrative permissions [3]; ARBAC97 requires that the parameters of
administrative operations should satisfy certain conditions [2]; the RHA model
introduces the idea of administrative scope which divides the role hierarchy into
a number of different administrative domains [1].

The ANSI-RBAC standard was released in 2004 [4]. It is very strongly in-
fluenced by the RBAC96 model [3] and the NIST proposal for an RBAC stan-
dard [5]. It states the administrative functions that must be supported by an
RBAC system that is compliant with the standard. However, it provides no
model for administration, nor does it specify how those functions should be
implemented.

We believe, therefore, that there is a pressing need for a comprehensive model
for administration in role-based systems, and it is this need that we address in
this paper. Moreover, we believe that existing models for administration each
have certain limitations: primarily, the assignment of administrative permissions
to roles in RBAC96 is insufficiently structured and leads to a lack of control
over the propagation of permissions, while the highly structured approaches of
ARBAC97 and RHA are insufficiently flexible.

In this paper, we construct a general model for role-based administration
that takes advantage of some of the features of existing models and introduces
some new features. That is, we employ administrative permissions, divide the
role hierarchy into different administrative domains, and require that the pa-
rameters of an administrative operation meet certain conditions. In particular,
we will show that this approach provides far more control over which roles can
perform different administrative operations and provides stronger control over
which operations are permitted. We can insist that only a human resources role
can update the assignment of users to roles, for example, and that the assignment
of a user to a role only succeeds if the user, the role and the administrative role
performing the assignment satisfy certain conditions. Our approach also means
that we are able to require that different roles perform different types of opera-
tions within each administrative domain; what we call administrative separation

of duty.
In the next section we introduce our model for administration. We introduce

some prerequisite concepts from mathematics and RBAC, and then define ad-
ministrative permissions, domains and commands. We then define the extensions
to RBAC96 that are required to support role-based administration. In Sect. 4 we
introduce the use of separation of duty constraints for administration. In Sect. 5
we illustrate our approach using an example from the literature. In this section
we also compare our approach to related work. We conclude the paper in Sect. 6
by summarizing our contribution and suggesting some ideas for future work.

2 Foundations for a New Model for Administration

2.1 Mathematical Preliminaries

Let 6 be a reflexive, anti-symmetric, transitive binary relation on X . Then we
say (X, 6) is a partially ordered set or poset. When the order relation is obvious
from context we will simply write “X is a poset”. We may write y > x whenever
x 6 y.

Let Y ⊆ X : we say y ∈ Y is a maximal element in Y if y 6 x implies
that x = y for all x ∈ Y . Informally, there is no element bigger than y in Y .
A minimal element of Y is defined analogously. We write max(Y) (respectively
min(Y)) to denote the set of maximal (minimal) elements in Y . Let x, y ∈ X :
we say y is the parent of x if for any z ∈ X such that x < z 6 y, y = z.
In other words, y is the parent of x if there is no element of X that can “fit
between” x and y in the ordering. Given Y ⊆ X , we use the following notation:

↓Y = {x ∈ X : x 6 y, y ∈ Y }; ↑Y = {x ∈ X : x > y, y ∈ Y }. We write ↓x rather
than ↓{x} and ↑x rather than ↑{x}.

2.2 RBAC Preliminaries

A hierarchical role-based access control model1 has the following features [3, 4]: a
partially ordered set of roles (R, 6); a set of permissions P and a permission-role
assignment relation PA ⊆ P × R; a set of users U and a user-role assignment
relation UA ⊆ U × R. The set of roles available to a user u ∈ U is defined to
be {r ∈ R : r 6 r′, (u, r′) ∈ UA}, and the set of permissions available to u is
defined to be {p ∈ P : (p, r) ∈ PA, r 6 r′, (u, r′) ∈ UA}.

2.3 Administrative Permissions

In the early RBAC literature, permissions were simply “uninterpreted symbols”,
because the precise nature of permissions is “implementation and system depen-
dent” [3]. In the ANSI-RBAC standard, which is based on the RBAC96 model,
permissions are defined by an object and an action (or operation). In the context
of administrative permissions, it is instructive to actually specify the object and
action for each permission.

The RBAC96 model defines five sets, P , U , (R, 6), UA ⊆ U × R, and
PA ⊆ P × R, and we require administrative permissions that can update each
of these sets. We assume that the partially ordered set of roles is implemented
by a role hierarchy relation RH ⊆ R×R. We assume that there are two generic
(primitive) actions add and delete, and that either of these actions may be
applied to one of the objects that define the role-based model. In other words,
we may add or delete entries from each of P , U , RH , UA, and PA. We will write
addX to denote the permission (add, X) and delX to denote the administrative
permission (delete, X), where X ∈ {P, U,RH ,UA,PA}.

2.4 Administrative Commands

A request to invoke an administrative permission is made by an administra-
tive role. The request will specify a number of parameters, determined by the
permission requested. For example, the parameters required when invoking the
addUA permission, which is a request to assign a user u to a role r, will obviously
be u and r, as well as the administrative role a in which the requesting user
is acting. In this paper, we will write parameterized administrative requests as
function calls and refer to them as administrative commands (in the style of
Harrison-Ruzzo-Ullman commands [6]).

Table 1 summarizes the ten administrative commands. It should be noted
that we have only stated the immediate effect of an administrative command. In

1 Both RBAC96 [3] and the ANSI-RBAC standard [4] distinguish between flat RBAC
(RBAC0 [3]) and hierarchical RBAC (RBAC1 [3]). This distinction is unnecessary
as an unordered set is a partially ordered set with an empty order relation.

general, additional changes may need to be made: in particular, when a role is
added or deleted, the set of edges (RH) will also need to be updated. We have
omitted these changes in order to simplify the presentation. We assume each
command is initiated by an administrative role a. For each add command, there
is a corresponding delete command; these commands are not shown in the table.

Table 1. Administrative commands

Command Effect Description

addU(a, u) U ← U ∪ {u} Create a new user account

addP(a, p) P ← P ∪ {p} Create a new permission

addR(a, r, C, P) R← R ∪ {r} Add role with children C and parents P

addE(a, c, p) RH ← RH ∪ {(c, p)} Add edge (c, p)

addUA(a, u, r) UA← UA ∪ {(u, r)} Create a new user-role assignment

addPA(a, p, r) PA← PA ∪ {(p, r)} Create a new permission-role assignment

2.5 Administrative Domains

A fundamental part of our model is the concept of an administrative domain.
Intuitively, an administrative domain is a set of roles within the role hierarchy
that can be administered by the same role. Given a role hierarchy, we would
expect that an appropriate choice of domains would be quite apparent. However,
formalizing the notion of an administrative domain is rather more difficult.

In fact, it is easier to consider the set of administrative domains. This is be-
cause it seems reasonable that there should be no overlap between different ad-
ministrative domains. The justification for this lies in the notions of “ownership”
and “responsibility”. Suppose that role r belongs to two different administrative
domains D1 and D2 and each domain is associated with an administrative role
a1 and a2. Then if a1 assigns a user u to r, u may acquire certain roles and
permissions within D2 without a2’s knowledge or approval. This suggests that
the set of roles should be partitioned (in a mathematical sense) into different
domains.

There is, however, one situation where overlapping domains would be intu-
itively reasonable, particularly within the context of RBAC. That is, when one
domain D2 is completely contained within a second D1. In this case, when a1

assigns u to a role within D1, any roles that u obtains in D2 through inheritance
are also contained within D1. Hence, we define the notion of a nested partition
of a set and use this to define an administrative partition of a set of roles.

Definition 1 Let X be a set. A family of sets Y = {Y1, . . . , Yn}, ∅ ⊂ Yi ⊆ X,

is a nested partition of X if X =
⋃n

i=1
Yi, and for all Yi, Yj ∈ Y, one of the

following conditions holds: (i) Yi ∩ Yj = ∅ (ii) Yi ⊆ Yj (iii) Yj ⊆ Yi.

Let (R, 6) be a set of roles and let D = {D1, . . . , Dn}, Di ⊆ R. We say D is
an administrative partition of R if D is a nested partition of R. Each element of
an administrative partition is called an administrative domain. In other words,
D is an administrative partition if every role is contained in at least one domain
and every pair of domains either has empty intersection or one is completely
contained in the other. Clearly, D = {R} is a (trivial) set of administrative
domains. At the other extreme, D = {{r1}, . . . , {rn}}, where R = {r1, . . . , rn},
is a set of administrative domains. Note that a set of administrative domains is
partially ordered by subset inclusion. In fact, we have the following two results.

Proposition 2 Let D be a set of administrative domains. Then for any D ∈ D,

D has at most one parent.

Proof. We need to show that if a domain D has a parent D′, then D′ is unique.
Suppose, in order to obtain a contradiction, that there exist two distinct domains
D′ and D′′ that are both parents of D. Now D′ ∩ D′′ 6= ∅, since D ⊆ D′ ∩ D′′.
Hence, since D′ and D′′ are distinct administrative domains, either D′ ⊂ D′′ or
D′′ ⊂ D′. We can assume without loss of generality that D′ ⊂ D′′ and hence
D′′ is not a parent of D (since we have D ⊂ D′ ⊂ D′′). This is the required
contradiction and the result now follows.

Corollary 3 Let D be an administrative partition of R. Then the graph of the

reflexive transitive reduction of the poset (D,⊆) is a forest.

3 A New Administrative Model for RBAC96

We augment the standard RBAC96 model with a set of administrative domains
D and a domain-role assignment relation DA ⊆ D × R. We say r has admin-

istrative control over D if (D, r) ∈ DA. We say r is an administrative role if
(D, r) ∈ DA, for some D ∈ D. (If D = {R}, we do not require the DA relation.)
Let D, D′ ∈ D and D ⊆ D′. If r has administrative control over D′ then we
assume that r also has administrative control over D. Hence, the ordering on
the set of domains induces an ordering on the set of administrative roles.

We define a new relation assigning administrative permissions to roles
APA ⊆ AP × R, where AP is the set of administrative permissions. An ad-
ministrative command is issued by (a user acting in) an administrative role a

and is interpreted as an attempt to invoke an administrative permission with par-
ticular parameters (chosen by the requesting user). An administrative command
is permitted if the discretionary administrative property and the mandatory ad-

ministrative property are satisfied:

Property 1 The administrative command cmdX(a, . . .) satisfies the

discretionary administrative property if (a, (cmd, X)) ∈ APA, where

cmd ∈ {add, delete}.

Property 2 The administrative command cmdX(a, . . .) satisfies the mandatory
administrative property if the role parameters of the command belong to a do-

main over which a has administrative control. In particular:

– for addR(a, r, C, P) to succeed, there must exist a domain D over which a

has administrative control and C, P ⊆ D;

– for addE(a, c, p) and delE(a, c, p) to succeed, there must exist a domain D

over which a has administrative control and c, p ∈ D;

– for delR(a, r), addUA(a, u, r), addPA(a, p, r), delUA(a, u, r), and

delPA(a, p, r) to succeed, there must exist a domain D over which a

has administrative control and r ∈ D.

Note that if r has administrative control over D′ then r also has administra-
tive control over every domain D ∈ D such that D ⊆ D′. In other words, the
mandatory administrative property is similar to the simple security property of
the Bell-LaPadula model [7], which states that a subject s can read any object
o with a security label that is less than or equal to that of s.

3.1 User-Role Assignment

It is fairly easy to see that the existence of a role hierarchy means that admin-
istrative commands could affect more than one administrative domain. In this
section we introduce a further mandatory control on the execution of user-role
assignment commands.

This control is motivated by the following observation: the assignment of a
user u to a role r results in u being implicitly assigned (via inheritance in the role
hierarchy) to all roles r′ < r. In other words, if an administrative role assigns u

to a role r within its domain D, it may have an impact on the roles available
to u in an administrative domain D′ ⊃ D. Hence, a very natural (mandatory)
requirement on user-role assignment should be that u is already assigned to more
junior roles that are not in the administrative domain of the role to which u is to
be assigned. More formally, we have the following security property for user-role
assignment.

Property 3 The command addUA(a, u, r) satisfies the mandatory UA property
if there exists a domain D over which a has administrative control such that

r ∈ D and u is already assigned to all roles in max(↓r \ D).

Let us assume that an administrative role a has the permission to create new
user accounts. An important consequence of the mandatory UA property is that
an administrative role assigned to domain D cannot assign a new user to a role
r ∈ D unless ↓r ⊆ D. This means that it is impossible for an administrative user
(assigned to some administrative role), by virtue of the mandatory restrictions
on user-role assignment, to assign users to roles over which he has no control. In
other words, the damage that a malicious administrative user can do is limited
to the domain(s) he controls.

3.2 Permission-Role Assignment

Just as the act of assigning a user to a role r may have an impact outside the
domain controlled by the administrative role performing the assignment, the
act of assigning a permission to a role may also have undesirable consequences.
Consider the command addPA(a, p, r). If r belongs to a domain controlled by a

then we might expect that this command should be permitted. However, consider
the case when r < r′, p is not currently assigned to r′, and r′ does not belong
to any domain controlled by a. In this case, a is “giving away” the permission
p and the permission leaks from the domain(s) to which it has previously been
confined. Hence we introduce a mandatory security property for permission-role
assignment.

Property 4 The command addPA(a, p, r) satifies the mandatory PA property
if there exists a domain D over which a has administrative control such that

r ∈ D and p is already assigned to all roles in min(↑r \ D).

An important consequence of the mandatory PA property is that an adminis-
trative user cannot downgrade permissions, by assigning them to less senior roles
in the domain(s) he controls, beyond a certain level. As with the mandatory UA

property, the mandatory PA property limits the damage that a malicious ad-
ministrative user can do.

3.3 Automatic Assignment of Domains

Note that the union of the set of administrative domains is R. Therefore, we
need to specify which domain a newly created role should belong to. Intuitively,
we wish to assign the role to the most appropriate domain automatically. More
formally, we can specify that a newly created role r should belong to the smallest
domain D that contains P , where P is the set of parents of r.2 (Note that
“smallest domain” is well defined since the set of administrative domains can be
represented as a forest.)

3.4 Choosing Administrative Domains

Of course, the choice of appropriate administrative domains is an important
practical aspect of the model proposed in this paper. In fact, the notion of
administrative scope, introduced in the RHA model, can be particularly useful
in choosing administrative domains.

Definition 4 (Crampton [1]) The administrative scope of a role r, denoted

σ(r), is defined in the following way: σ(r) = {r′ 6 r : ↑r′ ⊆ ↓r ∪ ↑r}.

2 Note also that if role r is deleted, every domain to which r belongs has r removed
from it.

In other words, r′ ∈ σ(r) if any role bigger than r′ is comparable to r in
the role hierarchy. The intuition is that if r′ ∈ σ(r), then r “knows about” all
the upward inheritance from r′, and hence it is appropriate for r to be able
to administer r′. However, the reason that administrative scope is particularly
useful in the context of this paper is that it can be used to define a nested
partition of R.

Lemma 5 (Crampton [8, Lemma 2]) Let r, r′ ∈ R. Then

σ(r) ∩ σ(r′) =

σ(r) if r ∈ σ(r′),

σ(r′) if r′ ∈ σ(r),

∅ otherwise.

Corollary 6 Σ(R) =
⋃

r∈R σ(r) defines a nested partition of R.

Proof. For all r ∈ R, r ∈ σ(r). Hence Σ(R) = R. The remaining condition for
Σ(R) to be a nested partition follows from Lemma 5.

Let R′ ⊆ R and write Σ(R′) for
⋃

r∈R′ σ(r). Then any R′ ⊆ R such that
Σ(R′) = R can be used to define a set of administrative domains. Figure 1 illus-
trates the non-trivial domains (cardinality greater than 1) identified using admin-
istrative scope. Each domain is enclosed by a broken line. {σ(a), σ(b), σ(c), σ(d)}
would be a suitable choice of administrative domains; each of these domains is
enclosed by a heavier broken line. The domain forest in this example is simply a
root node for σ(a), and three child nodes, one for each of the domains determined
by the administrative scope of b, c and d.

3.5 Checking Access Requests Using the Domain Forest

Given an administrative command with administrative role parameter a and role
parameters X , we can check whether the mandatory administrative properties
are satisfied by considering the sub-tree of the domain forest rooted at a. We
simply check whether each role in X is contained in one of the domains in the
sub-tree. The simplicity with which the satisfaction of mandatory properties
can be checked contrasts sharply with the difficulty of checking whether an
administrative command is permitted in the ARBAC97 model [1].

Of course, additional resources are required to store and maintain the domain
forest. In particular, the domain forest will need to be updated following an addR

or delR command. Nevertheless, we believe that the benefits that are obtained
by using the domain forest more than offset this disadvantage.

4 Administrative Separation of Duty

We now introduce a second facet of our model for administration. We have
already seen that the mandatory UA and PA properties can prevent certain

a

b c d

Fig. 1. Administrative domains from administrative scope

types of administrative abuse. We now consider the use of separation of duty
constraints to further reduce the possibility that a single malicious user can
compromise the security of a system through a sequence of administrative com-
mands.

Separation of duty is an important control principle in management whereby
sensitive combinations of duties are partitioned between different individuals
in order to prevent the violation of business rules. The research community
has taken an active interest in incorporating separation of duty controls into
computer systems since the late 1980s. One of the rules of the Clark-Wilson
model [6] requires that separation of duty requirements must be met. In recent
years, a number of papers have studied separation of duty in the context of
RBAC [9–14].

Many of these papers have considered rather complex separation of duty
requirements. In the context of role-based administration, we claim that the
requirements are rather simple, so we will confine our attention to a very simple
model for separation of duty. The model is based on the RBAC96 notion of
mutually exclusive roles. However, in our case we will consider mutually exclusive
permissions.

Definition 7 An administrative separation of duty (ASD) constraint is a set

of administrative permissions. An ASD constraint C is satisfied provided no

user is assigned to all the permissions in C. An ASD policy is a family of ASD

constraints.

As a motivating example, let us assume that we wish to separate the following
functions: the creation of new user accounts (or simply users) and the assignment
of users to roles. We might wish to do this so that one user cannot create a new
user account and assign it to roles, preferring instead that a user acting in some
IT support role is responsible for creating users and a user acting in some human
resources role is responsible for deciding which roles are relevant to a user’s job.
In order to realize this requirement, we specify the separation of duty constraint
{addU, addUA}. This constraint is satisfied provided no user is assigned to both
permissions (via the UA and APA relations).

In the case when |C| = 2, we can ensure the satisfaction of C by assigning
each permission to different administrative roles a1 and a2, and ensuring that no
user is assigned to both roles. In other words, we can convert the ASD constraint
on administrative permissions into an ASD constraint on administrative roles.
In fact, we can ensure the satisfaction of any ASD constraint {p1, . . . , pn} by
re-writing it as a set of ASD constraints on administrative roles. Specifically, we
ensure that each permission pi is assigned to a different administrative role ai

and define the constraints {{ai, aj} : 1 6 i < j 6 n}. Now we can be assured
that the ASD constraint on administrative permissions is satisfied provided the
ASD policy on administrative roles is satisfied. It is quite straightforward to
ensure that this policy is always satisfied:

– at system initialization we simply check each user’s administrative role as-
signments;

– before allowing any command of the form addUA(a, u, a′), where a′ is an
administrative role, we must check that, if there exists an ASD constraint of
the form {a′, a′′}, then u is not already assigned to a′′.

Suppose, for example, that {a1, a2} is an ASD constraint on administrative roles
and u is already assigned to a1. Then the command addUA(a, u, a2) must fail,
because allowing it to succeed would violate the ASD constraint.

Another constraint that is likely to be useful in practice is {addUA, addPA},
which would prevent any administrative role from establishing a link between a
user and a particular permission by assigning them to the same role. In practice,
we might assign addUA to human resources and addPA to senior operational roles
within each domain. Clearly, the set of constraints that will be used in practice
will vary depending on the environment and on the personnel available.

5 Related Work

As we noted in the introduction, there have been two generic approaches to
administration of role-based systems. We now consider these approaches in more
detail and compare them to our approach. In order to provide a concrete basis for
this discussion, we introduce an example from the literature. This also provides
an opportunity to illustrate the use of our model.

Figure 2(a) shows a typical role hierarchy that has been used as an illustrative
example by Sandhu [2]. The hierarchy should be considered in the context of a

software engineering company, with two projects under the leadership of roles
PL1 and PL2. All employees are assigned to the E role and all software engineers
are assigned to the ED (engineering department) role. Each project has its own
security officer role (PSO1 and PSO2); the engineering department has a security
officer role (DSO); and the company has a senior security officer (SSO).

DIR

PL1

PE1 QE1 PE2

PL2

QE2

ENG2ENG1

ED

E

(a) A role hierarchy

PSO1 ED {E1, PE1, QE1}

PSO2 ED {E2, PE2, QE2}

DSO ED {E1, . . . , PL1, E2, . . . , PL2}

SSO E {ED, . . . , DIR}

(b) The can assign relation

PSO1 {E1, PE1, QE1}

PSO1 {E2, PE2, QE2}

DS0 {E1, . . . , PL1, E2, . . . , PL2}

SSO {ED, . . . , DIR}

(c) The can revoke relation

Fig. 2. An ARBAC97 example [2]

It is clear that there are four main administrative domains, one corresponding
to each of the projects, one corresponding to the department (which incorpo-
rates both project teams) and one corresponding to the whole role hierarchy.
These domains (sets of roles) are enclosed by dashed lines in Fig. 2. The PSO

roles have control over their respective projects, while the DSO and SSO roles
have control over the department and organization domains. Hence we would
suggest the following administrative configuration: we define the set of adminis-
trative domains to be {DP1

, DP2
, DEng , R}, where DPi

= {ENGi, PEi, QEi, PLi}3

and DEng = {ED} ∪ DP1
∪ DP2

; and we define the domain assignment rela-
tion to be {(DP1

, PSO1), (DP2
, PSO2), (DEng , DSO), (R, SSO)}. Note that D1, D2 ⊆

DEng ⊆ R induces the following partial order on the set of administrative roles:
PSO1, PSO2 < DSO < SSO. In addition we would need to assign administrative
permissions to each administrative role.

The mandatory UA property allows the PSO roles to assign u to a role in
their respective domains if u is already assigned to ED; DSO can assign u to a role
in DEng if u is already assigned to E; and SSO can assign any user to any role in

3 Note that σ(PLi) = {ENGi, PEi, QEi, PLi}.

R. In other words, the larger the domain controlled by an administrative role,
the more trust is placed in that role regarding administrative operations.

5.1 “Mandatory” Approaches

The ARBAC97 model was designed specifically as a management model for
RBAC96. It includes three sub-models URA97, PRA97, and RRA97, for man-
aging user-role assignment, permission-role assignment and role-role assignment
(the role hierarchy), respectively.

Each of the three sub-models uses relations that control what administrative
roles are permitted to do. Each of these relations (can assign and can revoke in
URA97, can assignp and can revokep in PRA97, and can modify in RRA97)
define sets of roles that each administrative role is permitted to change. An
element (a, q, R′) ∈ can assign, for example, means that an administrative role
a can assign any user who is assigned to the “prerequisite” role q ∈ R to any
role in the set R′ ⊆ R.

Figure 2 shows examples of the two URA97 relations. The project security
officers (PSO1 and PSO2), for example, can assign a user to roles in their respective
projects, provided the user is already assigned to ED. The departmental and
senior security officer roles (DSO and SSO) have greater powers to assign users to
roles. Similarly, the different security officer roles can revoke roles from different
sets of roles in the hierarchy, as specified by the can revoke relation.

Note that our model for administration is very much simpler than ARBAC97.
We only require a domain-role assignment relation and the APA relation. In-
deed, Fig. 2 omits the other ARBAC97 relations, can assignp, can revokep

and can modify.

The ARBAC97 approach mixes the definition of administrative domains with
administrative rights. Our proposed approach to role-based administration sep-
arates the specification of administrative domains and the assignment of admin-
istrative rights. One useful consequence of this is that we only need to specify a
set of administrative domains and a domain-role assignment relation.

The ARBAC97 model assumes that can-assign and the other relations in
the model are static. This means that if a new role is added to the hierarchy,
for example, no constraints can be imposed on the assignment of users (and
permissions) to that role. We believe that the static nature of ARBAC97 relations
is a considerable disadvantage.

The role sets specified in ARBAC97 relations are always expressed as ranges
within the partially ordered set of roles. Moreover, it is impossible to delete a
role that is the end-point of a range in an ARBAC97 relation. A particularly
significant limitation of ARBAC97 is the requirement in RRA97 that all ranges
in the can modify relation are encapsulated [2] and that all hierarchy operations
should preserve the encapsulation of ranges defined in the can modify relation.
One side effect of this requirement is that the creation of a role with either no
parent or no child will violate the encapsulation of some encapsulated range in
the hierarchy and hence such operations are prohibited. In addition, encapsulated

ranges are actually quite rare in partially ordered sets.4 In short, the use of ranges
leads to significant usability problems for the ARBAC97 model.

The ARBAC02 model extends ARBAC97 by introducing organizational
units [15]. The main motivation for this seems to be to reduce the number
of steps that are required when assigning users (and permissions) to roles. This
problem arises as a consequence of the use of prerequisite roles in the can assign

and can assignp relations. Organizational units are nothing more than groups
of roles and hence can be thought of as administrative domains. The designers
of ARBAC02 do not impose any structure on organizational units. Can one role
belong to two different organizational units, for example? Organizational units
are only used to simplify the prerequisite conditions in the assignment relations
can assign and can assignp, which seems a wasted opportunity.

The RHA family of models defines the notion of administrative scope.
Whether a request to perform an administrative action is permitted is defined
in terms of administrative scope. In this respect, administrative scope is similar
to the different role ranges that are defined in each of the ARBAC97 relations.
The big advantage of RHA over ARBAC97 is that a single set of roles (namely
administrative scope) is used to determine the success or otherwise of admin-
istrative commands. In many ways, the RHA family of models is simpler and
more versatile than ARBAC97 [1].

However, RHA shares one weakness with ARBAC97: it is vulnerable to
changes in the role hierarchy, because the administrative domains are defined
in terms of the role hierarchy structure itself. In ARBAC97, domains are defined
by encapsulated ranges; in RHA, domains are defined by administrative scope.
Hence, it is necessary to perform some additional checks before allowing hierar-
chy operations, in order to check that administrative domains are preserved by
the operation. Again, it turns out that this is easier to check whether domains
are preserved in RHA than in ARBAC97, but it is still an overhead [8]. In other
words, we believe the approach advocated in this paper, in which domains are
simply specified by the system administrator and then left to evolve according
to the successful execution of commands by administrative roles, is likely to lead
to more useable systems.

5.2 “Discretionary” Approaches

The RBAC96 family of models does not explicitly include administrative func-
tionality. The original paper on RBAC96 suggests that the model can be aug-
mented by administrative permissions and roles, as well as an administrative
role hierarchy and an administrative permission-role assignment relation. This
approach assumes that there is a single administrative domain D.

There are two significant disadvantages to this approach. Firstly, it is rather
difficult to provide fine-grained administrative control: an administrative role
either has an administrative permission or it doesn’t. Secondly, it is difficult
to reason about the propagation of permissions to users, for reasons similar to

4 A comprehensive analysis of the shortcomings of ARBAC97 can be found in [1].

those that make it difficult to reason about the propagation of access rights in
a protection matrix [6].

X-GTRBAC is an XML-based RBAC model that includes temporal con-
straints on the activation of roles. Bhatti et al have proposed an administrative
model for X-GTRBAC based on the use of administrative permissions [16]. The
interesting aspect of X-GTRBAC Admin is its introduction of administrative
domains and the association of administrative permissions with administrative
domains. However, X-GTRBAC Admin simply defines domains and associates
roles and permissions with each domain. Like ARBAC02, it makes no attempt
to impose any structure on administrative domains or to exploit the existence
of domains in any way. As such, X-GTRBAC Admin simply extends the admin-
istrative model of RBAC96 by the introduction of administrative domains, but
does not take advantage of the additional possibilities that this provides.

6 Conclusion

In this paper we have introduced a new model for role-based administration.
To our knowledge, this is the first model to combine the use of administrative
permissions and conditions on the parameters of an administrative command.
These requirements are characterized as discretionary and mandatory adminis-
trative controls, respectively. The mandatory controls limit the extent to which
administrative users can propagate user- and permission-role assignments, mak-
ing it more difficult for an administrative user to compromise or damage the
access control system (either deliberately or accidentally).

We believe that our model offers a number of advantages over existing ap-
proaches to role-based administration. In particular, it is more flexible than
approaches such as ARBAC97 and RHA because it does not require adminis-
trative domains to have a particular structure (beyond requiring that the set
of domains forms a nested partition of R). Nevertheless, it does incorporate
mandatory controls, which means it provides greater control over the evolution
of the access control system than unstructured approaches such as RBAC96 and
X-GTRBAC Admin.

One obvious aspect of future work will be the development of a prototype im-
plementation. On a more theoretical level, it would be interesting to see whether
further mandatory properties are required for hierarchy operations. For example,
should we limit the ability of a senior administrative role to add an edge between
roles in two different domains? Our recent paper considers what conditions need
to be placed on hierarchy operations in order to preserve administrative scope in
the RHA model and encapsulated ranges in ARBAC97 [8]. It will be interesting
to investigate whether analogous conditions are required or can be used for the
less structured model described in this paper.

Acknowledgements. I would like to thank the anonymous referees for their com-
ments, which have helped to improve the final version of the paper.

References

1. Crampton, J., Loizou, G.: Administrative scope: A foundation for role-based ad-
ministrative models. ACM Transactions on Information and System Security 6(2)
(2003) 201–231

2. Sandhu, R., Bhamidipati, V., Munawer, Q.: The ARBAC97 model for role-based
administration of roles. ACM Transactions on Information and System Security
1(2) (1999) 105–135

3. Sandhu, R., Coyne, E., Feinstein, H., Youman, C.: Role-based access control mod-
els. IEEE Computer 29(2) (1996) 38–47

4. American National Standards Institute: ANSI INCITS 359-2004 for Role Based
Access Control. (2004)

5. Ferraiolo, D., Sandhu, R., Gavrila, S., Kuhn, D., Chandramouli, R.: Proposed
NIST standard for role-based access control. ACM Transactions on Information
and System Security 4(3) (2001) 224–274

6. Harrison, M., Ruzzo, W., Ullman, J.: Protection in operating systems. Communi-
cations of the ACM 19(8) (1976) 461–471

7. Bell, D., LaPadula, L.: Secure computer systems: Mathematical foundations. Tech-
nical Report MTR-2547, Volume I, Mitre Corporation, Bedford, Massachusetts
(1973)

8. Crampton, J.: Understanding and developing role-based administrative models.
In: Proceedings of the 12th ACM Conference on Computer and Communications
Security. (2005) 158–167

9. Ahn, G.J., Sandhu, R.: Role-based authorization constraints specification. ACM
Transactions on Information and System Security 3(4) (2000) 207–226

10. Crampton, J.: Specifying and enforcing constraints in role-based access control.
In: Proceedings of the 8th ACM Symposium on Access Control Models and Tech-
nologies. (2003) 43–50

11. Gligor, V., Gavrila, S., Ferraiolo, D.: On the formal definition of separation-of-duty
policies and their composition. In: Proceedings of the 1998 IEEE Symposium on
Security and Privacy. (1998) 172–183

12. Jaeger, T., Tidswell, J.: Practical safety in flexible access control models. ACM
Transactions on Information and System Security 4(2) (2001) 158–190

13. Nyanchama, M., Osborn, S.: The role graph model and conflict of interest. ACM
Transactions on Information and System Security 2(1) (1999) 3–33

14. Simon, R., Zurko, M.: Separation of duty in role-based environments. In: Proceed-
ings of 10th IEEE Computer Security Foundations Workshop. (1997) 183–194

15. Oh, S., Sandhu, R.: A model for role administration using organization structure.
In: Proceedings of the Seventh ACM Symposium on Access Control Models and
Technologies. (2002) 155–162

16. Bhatti, R., Joshi, J., Bertino, E., Ghafoor, A.: X-GTRBAC Admin: A decentralized
administration model for enterprise-wide access control. In: Proceedings of the 9th
ACM Symposium on Access Control Models and Technologies. (2004) 78–86

