
Micro SIDs: a solution for Efficient Representation
of Segment IDs in SRv6 Networks

Angelo Tulumello∗, Andrea Mayer∗†, Marco Bonola∗†, Paolo Lungaroni∗†, Carmine Scarpitta∗†,
Stefano Salsano∗†, Ahmed Abdelsalam§, Pablo Camarillo§, Darren Dukes§, Francoid Clad§, Clarence Filsfils§

∗University of Rome Tor Vergata, †CNIT, §Cisco Systems

Abstract—The Segment Routing (SR) architecture is based on
loose source routing. A list of instructions, called segments can
be added to the packet headers, to influence the forwarding
and the processing of the packets in an SR enabled network.
In SRv6 (Segment Routing over IPv6 data plane) the segments
are represented with IPv6 addresses, which are 16 bytes long.
There are some SRv6 service scenarios that may require to carry
a large number of segments in the IPv6 packet headers. Reducing
the size of these overheads is useful to minimize the impact on
MTU (Maximum Transfer Unit) and to enable SRv6 on legacy
hardware devices with limited processing capabilities that could
suffer the long headers. In this paper we present the Micro SID
solution for the efficient representation of segment identifiers.
With this solution, the length of the segment list can be drastically
reduced.

Index Terms—Segment Routing, Network Architecture, IP
routing protocols

I. INTRODUCTION

THE SRv6 (Segment Routing over IPv6) Network Pro-
gramming framework [1] extends the Segment Routing

architecture [2], [3]. According to [1], a packet processing
program can be expressed with a sequence of instructions
called segments. Each instruction is encoded in a Segment
ID (SID) which is 16-byte long (128 bits, the same size of an
IPv6 address). SRv6 leverages the Segment Routing Header
(SRH) [4] to encode the packet processing program in the
IPv6 packet headers as a Segment List, together with optional
metadata.

In SRv6 jargon, an operation to be executed at a node
is called a behavior. The packet processing instructions may
express: i.) topological or traffic-engineering behaviours, such
as “go to this node via the Best-Effort Slice” or “go to this
node via the Low-Latency Slice”; ii.) fast-reroute behaviours,
such as “upon the sudden loss of a link, reroute the traffic
via an optimum backup path”; iii.) VPN behaviours, such as
“egress the network via a specified Virtual Private Network
(VPN) table of a specified Provider Edge (PE) router”. More
in general, any application behaviour can be encoded in
a network program, to be executed by a physical service
appliance or by a softwarized component running in a virtual
machine or in a container.

As discussed in [5], some application scenarios for SRv6
may require long sequences of SIDs to be carried in the SRH
packet header (e.g. up to 15 SIDs). In the current SRv6 model,

this requires N ∗ 16 bytes to be carried in the SRH, where N
is the number of SIDs in the SID list. For this reason, an
open research and technological problem is to find a solution
to shorten the length of the SID representation in the packet
headers. In this paper we present the Micro SID solution [6],
its implementation in three different targets and a use case
showing the interoperability among them.

The Micro SID solution introduces a straightforward exten-
sion to the SRv6 network programming model: each 16-byte
SID can encode a micro-program rather than a single instruc-
tion. A micro-program is composed of micro-instructions, each
represented with a Micro SID, also called uSID.

In this paper we give a brief description of the SRv6
framework in Section II to explain the basic functionalities
exploited in the Micro SID solution, presented in Section
III. In Section IV we analyze the saving in terms of header
size compared to base SRv6 obtained with the Micro SID
solution and with another proposed solution called SRm6 [7].
We present the Micro SID implementation on Linux, VPP and
P4 platforms in Section V and show the interoperability of
the three implementations in Section VI. We evaluate the pro-
cessing load performance of the Micro SID implementations
in Section VII and discuss related works in Section VIII.

II. SRV6 NETWORK PROGRAMMING FRAMEWORK

In this section, we shortly recall the main features of SRv6
Network Programming framework, as needed to understand
the rest of the paper. For further details, we refer the reader
to the specification of the framework in [1] and to the tutorial
on SRv6 that is available in [8].

An SRv6 SID can be partitioned in three parts and expressed
as LOC:FUNCT:ARG (Locator, Function, Argument). The
Locator part can be routable and used to forward a packet to
a specific node, where a behavior, identified by the Function
part needs to be executed. In most cases, the Argument part
is not used, hence a SID can be simply decomposed in two
parts LOC:FUNCT (Locator and Function). To provide an
example (taken from [1]) an operator can use a /48 IPv6
network prefix for its SRv6 transport domain which include
all SRv6 capable transport nodes.We refer to this prefix as
Locator Block. Each SRv6 capable node can be assigned a
different /64 IPv6 network sub-prefix inside the Locator Block,
therefore up to 216 = 65356 SRv6 nodes can be supported
in this specific configuration. Inside each SRv6 node, 264

different SIDs can be supported. As an example (see Fig. 1, the978-3-903176-31-7 c©2020 IFIP

/48 Locator Block prefix can be fc00:1234:abcd::/48,
a specific node prefix can be fc00:1234:abcd:N::/64,
and the SID of a behavior to be executed in the node can
be fc00:1234:abcd:0100::S. In this case, the locator
part (LOC) is represented by the leftmost 64 bits, composed
by the Locator Block and by a node part N. In the example,
the locator for node RN is fc00:1234:abcd:0N00. The
FUNCT part is represented by the rightmost 64 bits (no ARGS
is considered). In the example, 0001 or F001 are used
(preceded by 12 more leading zeros in hexadecimal notation).

The regular routing protocols can be used to distribute the
reachability information for the Locators associated to the
SRv6 network nodes. In this way, a single routing prefix can
be used to reach a given node and forward the packets towards
all behaviors that can be executed by that node. To ease the
interoperability, a set of “well-known” behaviors is defined
in [1] (but other documents can define additional behaviors).
The most important SRv6 behaviors defined in [1] are briefly
described hereafter.

The simplest SRv6 behavior is the End behavior, which
is used to enforce a topological waypoint in the path of a
packet towards its final destination. In the example shown in
Fig. 1, a packet coming from Site A enters the SR domain
in node R1, where it is encapsulated in an IPv6 outer packet.
Starting from node R1, the packet needs to cross R8, then
R7, then it needs to reach R2 where it will be decapsulated
and sent to Site B. Each node RN advertises a /64 prefix,
in the example fc00:1234:abcd:0N00::/64. Consider-
ing node R8, the fc00:1234:abcd:0800::0001 SID is
mapped into the End behavior in node R8 reached with the
fc00:1234:abcd:0800::/64 prefix. The End behavior
simply corresponds to “consuming” one SID in the SID list,
therefore node R8 will read the next SID in the SID list and
will update the IPv6 destination address with the next SID. The
End.X behavior is meant to cross-connect the packet towards
a specific next hop. The End.T behavior is used to use a
specific routing table for the the IPv6 route lookup (as needed
for example to implement VPNs with per-customer routing
tables). The End.DX6 behavior is used to decapsulate a packet,
extracting it from the outer IPv6 packet, and to cross connect
it to a specific IPv6 next hop. The End.DT6 behavior is used
to decapsulate a packet and then to use a specific routing table
for the IPv6 route lookup of the inner packet.

A. SRv6 Control Plane aspects

An operator is free to associate a SID (logically split into
LOC:FUNCT or LOC:FUNCT:ARGS) to a given behavior in
a given node. The specific values for the SIDs and in particular
for the FUNCT part can be provisioned and managed by
an SDN controller, and/or they can be advertised by routing
protocols (OSPF, ISIS, BGP) with SRv6 specific extensions.
We observe that by using an SDN based approach, the use of
SRv6 specific routing protocol extensions is optional. An SRv6
network can be operated by only distributing node reachabil-
ity information (regular IPv6 prefixes) in routing protocols,

R1 R4 R5 R8

R2 R3 R6 R7

fcbb:bbbb:0800::/48

1 2

3

fcbb:bbbb:0700::/48fcbb:bbbb:0200::/48

4

step 1 Tx DA: FCBB:BBBB:0800:0700:0200:F00D:0000:0000

step 2
Rx DA: FCBB:BBBB:0800:0700:0200:F00D:0000:0000

Tx DA: FCBB:BBBB:0700:0200:F00D:0000:0000:0000

step 3
Rx DA: FCBB:BBBB:0700:0200:F00D:0000:0000:0000
Tx DA: FCBB:BBBB:0200:F00D:0000:0000:0000:0000

step 4
Decapsulate and cross-connect inner packet to SITE B

shift << 16

shift << 16

SITE A

SITE B

Tx DA: FCBB:BBBB:0200:F00D:0000:0000:0000:0000

Micro SID processing

SRv6 Processing

FC00:1234:ABCD:0200:0000:0000:0000:F001
FC00:1234:ABCD:0700:0000:0000:0000:0001
FC00:1234:ABCD:0800:0000:0000:0000:0001

1
2

0

step 1

step 2

step 3/4

SID List

Fig. 1: Plain SID and Micro SID example

Plain SRv6 Micro SID
End uN

End.X uA
End.DT4/End.DT6/End.DT2 uDT
End.DX4/End.DX6/End.DX2 uDX

TABLE I: Plain SRv6 behaviors and Micro SID behaviors

assuming that an SDN controller manages the association of
node SRv6 behaviors to SID values.

III. MICRO SIDS

The fundamental idea of the Micro SID solution [6] is that
each 16-byte instruction (SID) of an SRv6 packet can carry
a micro-program, composed of micro-instructions represented
with identifiers called Micro SIDs. This approach results in a
large saving of the packet overhead when multiple segments
(instructions) needs to be transported in an SRv6 packet. In
this work we will consider that uSIDs are represented with 2
bytes, but other choices are possible (e.g. using 3 or 4 bytes).

As described in [6], the Micro SID solution proposes
to extend SRv6 Network Programming with new behaviors,
called uN, uA, uDT, uDX, as described in Table I.

To introduce the reader to the basic Micro SID process-
ing, we describe a simple use case example, based on the
same reference topology of the SRv6 example, depicted in

Figure 1. In this case a /32 prefix is chosen as Locator
Block for the Micro SIDs (referred to as uSID block). All
routers in the topology are assigned a /48 prefix from this
Micro SID block: fcbb:bbbb::/32. The ingress router
R1 applies the Micro SID policy by encoding the address
fcbb:bbbb:0800:0700:0200:f00d:: into the outer
IPv6 header. This results into a source routing policy that
routes the packet through the path R8 → R7 → R2,
respectively identified by the Micro SIDs 0x0800, 0x0700
and 0x0200 and then executes a decap operation. Thus, R1

sends the packet to R8. The packet will cross R4 and R5 that
in this case enforce “base” IPv6 forwarding. As soon as R8

receives the packet, it “consumes” its Micro SID identifier in
the destination address: (i) the 0x0800 Micro SID is popped
from the destination address; (ii) the remaining Micro SID list
is shifted left by 16 bits; (iii) the End of Container identifier
(0x0000) is inserted in the last 16 bits. The resulting IPv6
destination address is fcbb:bbbb:0700:0200:f00d::.
Upon completion of the procedures above, the packet is
transmitted to R7 which performs an analogous set of pro-
cedures that ends with the transmission of a packet containing
the Micro SID list fcbb:bbbb:0200:f00d:: to R2 via
R6 → R3. Since R2 is the last SRv6 router in the path, the
destination address of the packet matches the FIB entry with
destination fcbb:bbbb:0200:f00d::/64. This rule includes the
terminator Micro SID f00d which triggers the final End.DT6
behavior: the packet is decapsulated and handled by a specific
IPv6 routing table.

The Micro SID solution fully leverages the SRv6 network
programming solution. In particular, the data plane with the
SRH dataplane encapsulation is leveraged without any change;
any SID in the SID list can carry micro segments. As for the
Control Plane, the SRv6 Control Plane is leveraged without
any change. The mechanisms for the compression of SID
identifiers are described in [9].

The Micro SID solution enables ultra-scale deployments
(e.g. as needed for multi-domain 5G scenarios) and reduces the
overhead at the minimum reducing the potential issues with
MTU. It is fully compatible with SRv6 architecture, so it can
run in mixed scenarios where only a subset of nodes support
the Micro SIDs.

IV. EVALUATION OF COMPRESSION SAVINGSS

This section provides a detailed analysis of the efficiency
of the Micro SID compression in a realistic SRv6 deployment
scenario. In particular, it considers the encapsulation size of
a compressed segment lists versus an uncompressed segment
list. The efficiency of the Micro SID solution is also compared
with another proposed SRH compression solutions called
SRm6 (Segment Routing Mapped to IPv6) [7].

We show that a mapping solution (like SRm6) does not
provide better compression than what can be achieved with
the SRv6 mechanism. As such, analysis of the SRm6 proposal
documented in [7] is provided for comparison.

The SRm6 solution [7] defines a new routing header called
Compact Routing header to be used to carry the list of

1

SR DOMAIN

Metro Left Metro RightCore

2

ML1

MLi

C0

Cj

MR0

MRk

5

6

7

8
43

Fig. 2: Reference topology for Compression Analysis

segments instead of the SRH. More specifically, [7] defines
two versions of CRH: CRH-16 and CRH-32, that respectively
support Segment Identifiers (SIDs) of 16 bits (2 bytes) and 32
bits (4 bytes). The SRm6 SIDs needs to be mapped into IPv6
addresses, locally on each node of an SRv6 network. A “Per
Path Service Instruction” can be encoded in a new Option to
be included in a Destination Option header of the IPv6 packet.

Note that the uSID solution is fully compatible at the data
plane level with the SRv6 framework, as the packet forwarding
is based on IPv6 Destination Addresses and on the SRH. The
SRm6 requires a data plane based on a new Routing Header
and on a new Option in the Destination Option header.

A. Reference topology and scenario

Let us consider a service provider offering a VPN service
with underlay optimization. The reference topology is depicted
in Fig. 2. Hosts 1 and 2 are located in two different sites of
a VPN customer. When host 1 sends a packet to host 2, the
SR domain ingress router 3 steers it to the egress edge router
4 via an SR Policy that enforces a path through a number of
underlay waypoints in Metro L (ML1..MLi), Core (C1..Cj),
and Metro R (MR1..MRk). The SR Policy ends with a SID
that instructs the egress edge router 4 to decapsulate the packet
and forward it towards host 2.

B. Compression Analysis

In the following, we analyze and compare the header
lengths of the uSID and SRm6 with respect to the basic
SRv6 header. In particular, we evaluate the “Encapsulation
size Saving” i.e. the fraction of Encapsulation overhead that
is saved using a compression solution with respect to the
original (uncompressed) Encapsulation overhead introduced
by the SRv6 solution based on full IPv6 SIDs and SRH.

According to [10], we define the Encapsulation size metric
E(SL) as the number of bytes required to encapsulate a packet
traversing an SRv6 domain. It includes all the bytes of the
“outer” IPv6 packet, from the beginning of the outer IPv6
packet (at layer 3) up to the beginning of the encapsulated
packet. We note that the encapsulation size E(SL) is a
function of the Segment List Size SL, as each Segment in
the SID List needs to be represented in the outer IPv6 packet.

The value of the the Encapsulation size metric is calculated
for reduced SRv6 encapsulation as E(SL) = 40 bytes (IPv6

Header) if (|SL| = 1) or (E(SL) = 40+8+(|SL|− 1) ∗ 16)
otherwise. Where 40 is the IPv6 header, 8 is the fixed part of
SRH and 16 is the size of IPv6 address.

The SRv6 basic encapsulation is evaluated considering the
reduced encapsulation policy (H.Encap.Red), defined in [1]
section 5.1. The H.Encap.Red policy encapsulates an IPv6
packet into an outer IPv6 packet with the SRH header. The
first SID of the segment list is placed in the IPv6 Destination
Address of the outer IPv6 packet and is not replicated in the
SRH. If the SID list consists of only one SID, the entire SRH
header may be omitted, resulting in a plain an IPv6 in IPv6
packet without the SRH extension header.

According to [11], we define the Encapsulation size Saving
ES metric considering the Encapsulation size of the com-
pressed solutions Ec(SL) and the Encapsulation size of plain
SRv6 without any compression encoding Ep(SL), as follows:
ES(SL) = 1− Ec(SL)/Ep(SL).

For the analysis of the Micro SID solution, the Lo-
cator Block identifies the SRv6 domain, while the the
Node&Function Block represents the node identifier along
with the function to be applied. The Argument block contains
the metadata needed to carry out the behavior processing.

A 16-byte SRv6 instruction that contains a micro-program
is called a uSID container instruction and has the structure
shown in Fig. 1. We measure the capacity CuSID of a uSID
container as follows:

CuSID =

⌊
(128−B)

NF

⌋
where B and NF are the lengths of the Locator and the
Node&Function blocks, respectively.

Given a sequence S of uncompressed SIDs the length of the
corresponding uSID sequence is evaluated as follows:

LuSID(S) =

⌈
|S|

CuSID

⌉
For SRm6, SIDs of fixed size are used, of 16 or 32 bits

which are carried in a new Routing Header called Compact
Routing Header (CRH) [12]. The CRH is made of a fixed
set of fields (i.e NextHdr, HdrLen, RoutingType, SegmentLeft,
SID[0], SID[1]) for a total of 8 bytes and a variable length list
of SIDs. The CRH must end on a 64-bit boundary otherwise
it must be padded with zeros.

SRm6 expects headers with 16-bit or 32-bits defined as
CRH-16 and CRH-32, respectively. In CRH-16 the length of
headers is ECRH16(SL) = 40 + 8 if |SL| = 1, otherwise
ECRH16(SL) = 40 + d(4 + |SL| ∗ 2)/8e ∗ 8 + 8.

In CRH-32 the length of headers is calculated as
ECRH32(SL) = 40 + 8 if |SL| = 1, otherwise
ECRH32(SL) = 40 + d(4 + |SL| ∗ 4)/8e ∗ 8 + 8.

In our comparison, the uSID solution is considered with 16-
bit uSID length (the uSID Block size is 32 bit). The SRm6 is
considered with both CRH-16 and CRH-32 routing headers.

Figure 3 plots the Encapsulation size Saving for the three
solutions, considering the reference scenario in a range from
one to seven underlay waypoints for each domain (Metro L,

Underlay waypoints for each domain

C
om

pr
es

si
on

 (%
)

0

20

40

60

80

(1T).V (2T).V (3T).V (4T).V (5T).V (6T).V (7T).V

uSID CRH-16 CRH-32

Fig. 3: Encapsulation size Saving for uSID and SRm6

Core, Metro R). The Micro SID compression is significant
(58%) also for a SID list of just 4 nodes (first group of bars in
Figure 3), thanks to the Reduced Encapsulation in IPv6 that
encodes the uSID list only in the IPv6 destination address,
without adding the SRH with the SID list in the IPv6 header.
Then, as the number of SIDs increases the uSID and the CRH-
16 solutions align to a compression percentage around 70%.

V. DESIGN AND IMPLEMENTATION

A. Implementation of uSIDs using P4 Language

A proof of concept implementation of uSID primitives
has been realized in P4, by extending a publicly available
implementation of the SRv6 framework [13]. To this end, we
have developed the following extensions:

• added a new action named usid_un, responsible for
(i) extracting the uSID of the next end router and (ii)
updating the IPv6 destination address accordingly (see
the Listings reported in the extended version)

• added a new Longest Prefix Match (LPM) table named
my_usid_table responsible for the uN behavior (see
listing reported in the extended version)

• modified the overall application logic (i.e.: the P4 apply
block) to invoke the new processing primitives

The full P4 implementation is available in our public repos-
itory [14]. Some P4 code listings and further details are
available in the extended version [15].

To support the uN behavior, the implemented P4 pipeline re-
quires two kinds of match/action entries. The first one matches
on a /48 IPv6 prefix (e.g. fcbb:bbbb:0100::/48) and
invokes the usid_un action performing the shift-and-lookup
primitive. The second one matches on a /64 prefix (e.g.
fcbb:bbbb:0100::/64 and triggers the SRv6 End be-
havior, i.e. decrement the SRH segment_left field and
copy the next SID from the SRH to the IPv6 destination
address.

B. Linux kernel uSID implementation

In order to add the support for uSID in the Linux kernel,
we designed and implemented a patchset that extends and
enhances the existent SRv6 subsystem. The proposed uSID
implementation comes up with the support for the uN and uA

behaviors which are, respectively, a variant of the Endpoint
(End) and of the Endpoint with Cross Connect (End.X).
Moreover, we have also extended the userspace iproute2
suite [16] to support the new uSID behaviors. In particular,
using the ip command we are able to instantiate and destroy
instances of uN and uA behaviors.

All the SRv6 behaviors implemented in the Linux kernel
share the same basic creation/setup function whose purpose
consists of allocating the memory for the new behavior in-
stance and parsing the supplied attributes. First, the basic
creation/setup function does not allow to specify a custom
callback on a per-behavior basis used for carrying out any
sort of interaction with the rest of the kernel or for allocating
some additional memory. Second, such basic approach does
not support any optional attributes supplied by the userspace
(which are required by the new uSID behaviors).

To implement the uN and uA behaviors we had to overcome
the two limitations mentioned above. To this end we have:
(1) extended the SRv6 implementation introducing two per-
behavior callbacks which are called (if provided) when a
new behavior instance is created and when it is going to
be destroyed; (2) patched the SRv6 Linux kernel to support
optional attributes for SRv6 behaviors without breaking any
backward compatibility.

The patchsets for the Linux kernel and the iproute2
suite are available in our project repository [17]. A more
detailed explanation of the proposed uSID implementation can
be found in the extended version of this paper [15].

C. uSID VPP implementation

Virtual Packet processor (VPP) is an open source virtual
router [18]. It implements a high-performance forwarder that
can run on commodity CPUs. VPP often runs on top of
the Data Plane Development Kit (DPDK) [19] to achieve
high speed I/O operations. DPDK maps directly the network
interface card (NIC) into user-space bypassing the underlying
Operating System kernel.

The packet processing architecture of VPP consists of graph
nodes that are composed together. Each graph node performs
one function of the processing stack such as IPv6 packets
input (ip6-input), or IPv6 FIB look-up (ip6-lookup). The
composition of the several graph nodes of VPP is decided at
runtime. VPP supports most of the behaviors defined in [1].

We added a new VPP graph node (sr-localsid-un) to
support the SRv6 uSID uN behavior. The new VPP graph
node implements the shift-and-lookup functionality. When a
new is uN behavior is created using VPP CLI/API, two
separate FIB entries are created. The first FIB entry (e.g.,
FC00:0000:0100::/48) triggers a shift-and-lookup of the
IPv6 destination address, while the second FIB entry (e.g.,
FC00:0000:0100::/64) triggers the SRH processing (im-
plemented in the sr-localsid VPP graph node) by copying the
next 128b SID from the SRH to the IPv6 destination address.

A received SRv6 packet may match either of the two FIB
entries. Depending on which FIB entry the packet hits, it gets
processed by a different VPP graph node. In this way we

uN: 0200

h31 h33
h32

h11 h81 h83
h82

h51 h53
h52

fd00:0:81::2

fd00:0:11::2

h13

h12

Arango
DB

Controller

Dashboard

L2 switch

L1

L2

L3
V4

V5

V8P7

P6

uN: 0300

uN: 0700

uN: 0100

uN: 0400

uN: 0500

uN: 0600

uN: 0800

uN block:
fcbb:bbbb::/32

Fig. 4: uN Interoperability testbed network topology

maintain the VPP performance and avoid instruction cache
misses as all the packets that arrive to the VPP graph node
must execute the same instruction, being either shift-and-
lookup or SRH processing.

VI. INTEROPERABILITY AND TESTBED

A. Use case description and goals

We present a distributed use case scenario, which has two
goals: (i) provide a functional assessment of the overall header
compression mechanism in a meaningful application scenario;
(ii) demonstrate that the uN extension can be implemented
on top of different data plane frameworks and that these
different implementations are inter-operable with each others.
The demo of the proposed use case is similar to the SRv6 Mi-
cro SID Interoperability Demonstration presented by CISCO
[20]. Differently from this one, our demo is reproducible and
publicly available at the project repository [14] and includes
the detailed instructions to repeat the proposed experiments.

Figure 4 shows the network topology of the proposed use
case scenario, which consists of:

• 3 Linux nodes implementing the SRv6 uN functions in
the kernel (L1, L2, L3);

• 3 programmable data planes nodes built on top of the
Vector Packet Processor platform [18] (V4, V5, V8);

• 2 programmable data planes nodes built on top of the
software-based P416 implementation bmv2 [21] (P6, P7);

• 1 controller responsible for managing the uN dynamic
configuration of paths and host traffic to be steered;

• 12 IPv6 enabled Linux end-hosts (h11, h12, h13, etc..).
The SRv6 uN primitive set addressed by the proposed use

case scenario consists of 3 functions. The first one is the
encap function, which is responsible for encapsulating the
IPv6 legacy packet that are “entering” into the SRv6 domain
and specifying the uN list describing the path. This function
is implemented by the edge nodes that receive packets from
the transmitting end hosts. The second one is the uN function
which is responsible for extracting the uN of the next router
(as described in section III). This function is implemented

encap uN(un) uN(End) decap
L1, L3 L1, L2, L3 L1, L2, L3 L1, L3

V5, V8 V4, V5, V8 V4, V5, V8 V5, V8

P7, P6 P7, P6

TABLE II: Micro SID functions and testbed nodes

both in the intermediate nodes and in edge nodes in the SRv6
path. This function operates in two different ways, referred
to as uN(un) uN(End). uN(un) consists in processing the
active Micro SID and replacing it with the next one (through a
shift operation). uN(End) consists in selecting the next SRv6
segment encoding a new micro-program, i.e. advancing the
next SID in the SRH and copying it in the destination address
of the IPv6 packet. This operation is performed by the uN
behavior when there are no more Micro SIDs to be processed
in the Micro SID container. Lastly the decap function is
responsible for extracting the original IPv6 legacy packet sent
by the transmitting end hosts. This function is implemented
in the last (edge) nodes in the SRv6 path that are responsible
for delivering the original IPv6 packet to the target end hosts.

Table II summarizes the association between the SRv6 uN
functions and the nodes implementing it.

B. Testbed deployment

As the main objective of this demo is the functional
assessment of the proposed header compression mechanism
(the performance assessment of the proposed implementations
is realized with specific standalone experiments described in
Section VII), the use case scenario described in the previous
section has been implemented in an emulated SW environ-
ment. In particular, we have designed and developed a virtual
environment built on top of mininet [22]. The relevant mininet
VM includes the 3 Micro SID implementations listed in the
previous section as well as the controller and the end hosts.
Micro SID numbering. For this use case we allocated the
Micro SID block fcbb:bbbb::/32. Each node is assigned
with a Micro SID in the format fcbb:bbbb:0X00::/44,
where X is an index bound to the node in the range [1, .., 8].
The use of the prefix length “/44” instead of “/48” is necessary
to support the encoding of the End.DT6 directive in the
least significant bit of the Micro SID (it also enables to
encode 14 behaviors more). As a result, nodes with End.DT6
capability will match the “/48” rule with the first bit enabled
to discriminate whether to apply uN(end) or End.DT6.

In order to solve the above mentioned issue, we imple-
mented also an alternative solution. A special Micro SID
(0xf00d) is used to support the End.DT6 and encoded at the
end of the Micro SID list, e.g. fcbb:bbbb:0X00:f00d::.
As a result, a node supporting this feature would enable
the End.DT6 action when it matches its assigned Micro SID
followed by f00d:0000::.

Further details, including the listings of the static routes
configurations for Linux, P4 and VPP can be found in the
extended version [15].

C. Functional assessment: control plane operations
In order to have a thorough interoperability assessment, we

create multiple end host flows and associate each of them to
different SRv6 uN enabled paths. For example, let us consider
a bidirectional ICMP echo request/reply flow between the
hosts h11 and h31. For the request, the controller enforces
the following path: L1(encap) → L2 → P7 → P6 → V5 →
V 41(End)→ L3(End.DT6). The ICMP echo reply sent by
h31 matches the same path in the reverse direction.

To express this policy from the control plane, it is just
needed to trigger one command in the controller CLI that
needs the following information:

• the IPv6 destination address of h31, needed to install in
L1 the path from h11 to h31;

• the IPv6 destination address of h11, to install in L3 the
path from h31 to h11;

• the list of the names of nodes to traverse (in this case
l1, l2, p7, p6, v5, v4, l3).

The controller also implements some extended features like
encoding correctly the End.DT6 behavior. As an example, it
supports the corner case in which the last segment of the Micro
SID list contains 6 “topological” Micro SIDs. In this case,
there is no more space left in the destination address to insert
the Micro SID expressing the End.DT6 behavior (0xf00d). It is
also not allowed to create a new segment containing only the
End.DT6 Micro SID (e.g. fcbb:bbbb:f00d::). Therefore,
the controller automatically inserts 5 Micro SIDs in the first
segment and in the last segment it inserts the Micro SID of
the egress node followed by the End.DT6 Micro SID (e.g.
fcbb:bbbb:0300:f00d::). It is worth noting that in the
case of adopting the other type of uSID numbering described
in Section VI-B, the entire Micro SID list would have fit inside
just one IPv6 destination address, resulting in a saving of 24
bytes (8 SRH and 16 for the SID).

Other control plane features implemented for uSID include:
• creating both symmetrical (same path for both outward

and return packets) and asymmetrical (different paths for
outward and return packets) policies;

• dumping the list of all installed policies;
• dumping a specific policy by specifying source and

destination addresses of end hosts;
• removing a policy by specifying all the parameters or by

referencing the policy ID.

D. Functional assessment: data plane operations
According to the control plane configuration

described in the previous subsection, the echo request
sent by h11 is intercepted by L1 that performs the
encap() function. The original ICMP packet is
encapsulated in an IPv6 header with destination address
fcbb:bbbb:0200:0700:0600:0500:0400::
expressing the first half of the path. The second half of
the path is encoded in the first position of the SRH SID list
with address fcbb:bbbb:0300:f00d::.

The encapsulated packet is then sent to L2 which ap-
plies the uN_un function, by extracting the first Micro SID

(0200) and shifting the segment. The resulting SRv6 path
is fcbb:bbbb:0700:0600:0500:0400::. The packet
is then sent to the second uN node (P7, identified by the
Micro SID 0700). These operations are iterated until the packet
reaches the last segment of the list (V4) which applies the
uN(End) function. Thus, V4 copies the second half of the
segment list in the IPv6 destination address and sends the
packet to the next uN node (L3). In L3, acting as egress router,
the packet is decapsulated and reaches the final end host h31.

For the ICMP echo reply path, the ingress node
(L1) encapsulates the packet encoding the uN list
fcbb:bbbb:0400:0500:0600:0700:0200:: in the
IPv6 destination address and fcbb:bbbb:0100:f00d::
in the SRv6 SID list. The operations applied to the reply
packet are analogues to the ones applied to the request and
for this reason are here omitted.

VII. PERFORMANCE EVALUATION

This section presents a performance analysis of the uN
header compression mechanisms based on a set of stand alone
experiments aiming at measuring the packet rate overhead
introduced by the proposed extension with respect to the base
SRv6 implementation.

A. Testbed deployment for the performance assessment

To evaluate both the Linux kernel and the VPP uN im-
plementation, we have reserved two bare metal servers on
the federated testbed infrastructure CloudLabs [23]. We have
deployed a simple topology consisting of a traffic generator
(TG) and a system under test (SUT). An instance of the TRex
DPDK-based traffic generator [24] runs on the TG machine.
Details of the hw configuration of the two servers are in [15].

In this simple testing scenario, we considered different
bidirectional flows. Packets sent from TG are received by SUT
on one network interface, processed according to the specific
SRv6/Un function under measurement, and sent back to TG on
the second network interface. We considered five experiments,
each one with a specific combination of SRv6/uN function and
packet type:

1) function uN(un) with IPv6 in IPv6 encapsulation with-
out SRH. In this experiment the Micro SIDs are encoded
directly within the destination address of the IPv6 header
and the packets processed are the smallest ones of this
measurement campaign (118 bytes);

2) function uN(un) with IPv6 in IPv6 encapsulation with-
out SRH. This experiment is similar to experiment 1, but
the packet size is “artificially” extended, by adding 40
bytes of payload padding, up to the same size of an IPv6
packet with an SRH containing two SIDs (i.e. 158 bytes);

3) function uN(un) with IPv6 packets plus a SRH contain-
ing two SIDs (158 bytes);

4) function uN(End) on IPv6 packets plus a SRH contain-
ing two SIDs (158 bytes);

5) function End (basic SRv6) on IPv6 packets with an
SRH containing two SIDs. Such behavior is considered to
be our performance baseline. The other experiments are

Function Encap PDR@0.5% Perf. Gain
1 uSID_un IPv6 in IPv6 869.61 kpps +2.48%
2 uSID_un IPv6 in IPv6 (pad) 869.66 kpps +2.48%
3 uSID_un IPv6 + SRv6 861.52 kpps +1.52%
4 uSID_end IPv6 + SRv6 843.17 kpps -0.64%
5 End IPv6 + SRv6 848.60 kpps ———

TABLE III: Linux kernel performance assessment

compared to this one to understand the overhead intro-
duced by the proposed header compression mechanism.
The packet size for this experiment is 158 bytes.

B. Linux kernel implementation assessment

The detailed results of the above described experiments for
the Linux kernel uN implementation are reported in table III.
For each experiment we performed 60 runs with a duration of
10 seconds each. Therefore, each experiment is the average
of the results of the 60 runs. The throughput (848.60 kpps)
measured in the experiment 5 is taken as reference to evaluate
the increase or decrease in performance experienced in the
other experiments. Indeed, the SRv6 End behavior does not
perform any uN operation so that it allows us to find out the
impact of the uSID processing with respect to the base SRv6
processing. For each experiment reported in table III, we run
the performance tests to estimate the maximum throughput
considering the Partial Drop Rate fixed at 0.5% (PDR@0.5%),
as discussed in [25] and [26].

As expected, the processing overhead introduced by the uN
behavior depends on which operation is performed and on the
packet encapsulation. The IPv6-in-IPv6 encapsulation achieves
the highest performance in terms of throughput. The fixed IPv6
header size along with a more efficient parsing are the key
factors which increase the overall throughput of 2.48% with
respect to the baseline (SRv6 End behavior).

Considering the SRv6 encapsulation, the uN(un) perfor-
mance is slightly better than the performance of the SRv6 End
behavior with a measured gain of 1.52% On the other hand,
when the uN(End) operation is applied on SRv6 packets the
measured performance drop with respect to the baseline is
0.64% and thus it could be considered practically negligible.

These results show that the large saving in packet overhead
the uSID solution provides, does not reduce performance with
respect to standard SRv6 processing.

C. VPP implementation assessment

In this subsection we briefly discuss the experiment results
for the VPP implementation. As expected, the packet rate
measured with the VPP is one order of magnitude higher than
the one obtained with the Linux kernel implementation. This is
mainly due to the fact the VPP instance under measurement
is built on top of DPDK[19], which compared to the plain
Linux kernel network subsystem performance, provides such
improved overall performance.

Indeed, for experiment 1 we measured an average packet
rate of 8541.78 kpps (which, with 118 byte packets, is close

to the 10 Gbps line rate of the NIC used in the testbed). For
the remaining four experiments, which are all based on 158
byte packets, we always reach the line rate, i.e. 6867.59 kpps.

D. P4 implementation assessment

As described in Section V, the implementation of uN in
P4 required few lines of code and as a consequence, limited
resources occupation. Moreover, taking as a reference the
SRv6 P4 implementation described in [13], our uN solution
can even reuse the table used for SRv6 processing. This brings
two advantages: (i) there is no need for adding a different table
for uN processing and (ii) the P4 node remains compatible
with plain SRv6. In fact, from a table occupation perspective,
to support uN processing it is only needed to add two entries
in the table implementing the SRv6 and uN behaviors. The P4
implementation described in this paper has not been assessed
in terms of performance as it is based on a behavioral model
(bmv2), meant primarily for functional assessment.

The P4 implementation presented in Section V is based on
P416 and not compatible with existing hardware like Tofino
[27] as is. In particular the usid_un action cannot be written
in P414 as described in the Listings reported in the extended
version, but must be segmented through multiple stages.

VIII. RELATED WORKS

A. SRv6 protocol extensions and optimizations

A comprehensive survey of the research on SRv6 can be
found in [28]. Among all the reported literature works, a
considerable number is related to our work, like the ones
focusing on optimizations [29][30][31][32]. A survey of the
SRv6 use cases can be found in [33].

B. SRv6 header compression mechanisms

Several works addressing the compression of the SRv6
header have been proposed in literature. Indeed, within the
IETF this problem is currently being addressed by several
ongoing works [34][7][12][35].

The COC solution is defined in the context of the framework
called “Generalized SRv6 Network Programming for SRv6
Compression” (G-SRv6) [34]. The basic idea is that in an
SRv6 domain all the IPv6 SIDs can share the initial part
of the address, i.e. the Locator Block (in the uSID solution
defined in the previous section, we have called it the uSID
block). Therefore it is possible to avoid carrying the full SID
in the Segment List of the SRH. Only a node identifiers and a
function (FUNCT) identifier is needed for each SID in the
Segment List. In the COC/SRv6 solution, the first SID of
the SRH is a regular SID, followed by a sequence of “short”
identifiers called C-SIDs (Compressed-SID). At each hop, the
IPv6 Destination Address (DA) will be updated keeping the
Locator Block at the beginning then inserting the C-SID (node
and function identifier). The final part of the address is used
to encode the pointer to the currently active C-SID identifier
in the C-SID list.

Note that the two proposed solutions uSID and COC have
been recently combined in the same conceptual framework in

[9], wherein uSID and COC are formally defined as extensions
of SRv6 End and End.X flavors.

[7] and [12] propose a natively compressed version of
SR mapped to IPv6 (SRm6) that inserts the SID list in an
extension header of IPv6, along with a 32 bit Compressed
Routing Header (CRH). Although this approach provides
similar compression benefits to uSID, SRm6 needs a new
control and data plane, a new ecosystem (not SRv6-native)
and additional lookups at egress PE [11].

The work described in [35] proposes a mechanism to encode
variable length SIDs (vSID), ranging from 1 to 128 bits,
signalled by the control plane. Having SIDs of variable length
increases versatility, but it comes at the cost of more complex
signalling to be handled by both control and data plane.

C. Segment Routing in SDN/NFV scenarios

SRv6 has been proved to be particularly suited for SD-
N/NFV scenarios [36]. Abdelsalam et al. [37] explored the
use of SRv6 for NFV service chaining.

A widely adopted SW based implementation of SRv6 is the
one provided within the Linux kernel [38]. The performance
of the Linux’s SRv6 implementation has been assessed in [39].

Other relevant SW based implementations [40], [41] lever-
age the eBPF programmable data plane implemented in the
Linux kernel to develop virtualized network functions. Another
eBPF based SRv6 implementation has been exploited in [41]
to realize in-network programmability use cases. Moreover, an
implementation of SRv6 on P4 dataplane and ONOS controller
has been presented in a tutorial[13] and has been extended with
Micro SID in [42].

SR has been also exploited in SDN scenarios. Bidkar et al.
[43] presented an SDN framework built upon Carrier Ethernet
and augmented with SR. L. Huang et al. [44] provide a novel
SR architecture based on OpenFlow that reduces the overhead
of additional flow entries and label space. Dugeon et al. [45]
implement and assess the SR approach with SDN based label
stack optimization on top of the SDN controller OpenDaylight.
Lee et al. [46] propose a routing algorithm for SDN with SR
that can meet the bandwidth requirements of routing requests.

IX. CONCLUSIONS

In this paper we presented Micro SID, an extension to SRv6
that aims at reducing the protocol overhead by providing a
compact representation of the segment list encoded in the IPv6
routing header (SRH). We showed an analytic demonstration
of the benefit of the proposed solution and we also proved
its feasibility by providing three different open source im-
plementations that introduce negligible processing overhead
with respect to the basic SRv6 approach. In addition, we
presented a reproducible interoperability demonstration of the
three implementations in a meaningful distributed use case.

ACKNOWLEDGMENT

This work has received funding from the Cisco University
Research Program Fund and the EU H2020 5G-EVE project.

REFERENCES

[1] C. Filsfils et al., “SRv6 Network Programming,” Internet
Engineering Task Force, Internet-Draft draft-ietf-spring-srv6-network-
programming, Mar. 2020, work in Progress. [Online]. Available:
https://tools.ietf.org/html/draft-ietf-spring-srv6-network-programming

[2] C. Filsfils et al., “The Segment Routing Architecture,” Global Commu-
nications Conference (GLOBECOM), 2015 IEEE, pp. 1–6, 2015.

[3] S. Previdi et al., “Segment Routing Architecture,” IETF RFC 8402, Jul.
2018. [Online]. Available: https://tools.ietf.org/html/rfc8402/

[4] C. Filsfils, D. Dukes (ed.) et al., “IPv6 Segment Routing
Header (SRH),” RFC 8754, Mar. 2020. [Online]. Available:
https://tools.ietf.org/html/rfc8754

[5] W. Cheng et al., “Shorter SRv6 SID Requirements,” Internet
Engineering Task Force, Internet-Draft draft-cheng-spring-shorter-
srv6-sid-requirement, Jul. 2020, work in Progress. [Online].
Available: https://tools.ietf.org/html/draft-cheng-spring-shorter-srv6-sid-
requirement

[6] C. Filsfils, P. Camarillo (eds.) et al., “Network Programming extension:
SRv6 uSID instruction,” Internet Engineering Task Force, Internet-
Draft draft-filsfils-spring-net-pgm-extension-srv6-usid, May 2020, work
in Progress. [Online]. Available: https://tools.ietf.org/html/draft-filsfils-
spring-net-pgm-extension-srv6-usid

[7] R. B. et al., “Segment Routing Mapped To IPv6 (SRm6),”
Internet Engineering Task Force, Internet-Draft draft-bonica-spring-
sr-mapped-six-01, Apr. 2020, work in Progress. [Online]. Available:
https://tools.ietf.org/html/draft-bonica-spring-sr-mapped-six

[8] P. L. Ventre, S. Salsano, M. Polverini, A. Cianfrani, A. Abdelsalam,
C. Filsfils, P. Camarillo, and F. Clad, “Segment routing: a comprehensive
survey of research activities, standardization efforts and implementation
results,” 2019.

[9] C. Filsfils (ed.) et al., “Compressed SRv6 Segment List Encoding
in SRH,” Internet Engineering Task Force, Internet-Draft draft-
filsfilscheng-spring-srv6-srh-comp-sl-enc, May 2020, work in Progress.
[Online]. Available: https://tools.ietf.org/html/draft-filsfilscheng-spring-
srv6-srh-comp-sl-enc

[10] C. F. et al., “Analysis Framework For Extensions of SRv6
Encapsulation,” Internet Engineering Task Force, Internet-Draft draft-
filsfils-spring-analysis-fmwk-ext-srv6-encap-01, Jan. 2020, work in
Progress. [Online]. Available: https://tools.ietf.org/html/filsfils-spring-
analysis-fmwk-ext-srv6-encap

[11] D. Dukes, “SRv6 Network Programming Overhead Analysis,”
Internet Engineering Task Force, Internet-Draft draft-dukes-spring-
srv6-overhead-analysis-00, Jun. 2020, work in Progress. [Online].
Available: https://datatracker.ietf.org/doc/html/draft-dukes-spring-srv6-
overhead-analysis-00

[12] R. Bonica, Y. Kamite, T. Niwa, A. Alston, and L. Jalil, “The IPv6
Compact Routing Header (CRH),” Internet Engineering Task Force,
Internet-Draft draft-bonica-6man-comp-rtg-hdr-22, May 2020, work in
Progress. [Online]. Available: https://datatracker.ietf.org/doc/html/draft-
bonica-6man-comp-rtg-hdr-22

[13] Y. T. C. Cascone, B. O’Connor. Building an srv6-
enabled fabric with p4 and onos. [Online]. Available:
https://github.com/opennetworkinglab/onos-p4-tutorial

[14] Micro sid interoperability testbed featuring linux kernel, vpp and
p4 dataplanes. [Online]. Available: https://github.com/netgroup/usid-
interop-testbed

[15] A. Tulumello et al., “Micro SIDs: a solution for Efficient Representation
of Segment IDs in SRv6 Networks,” 2020. [Online]. Available:
https://arxiv.org/abs/2007.12286

[16] “iproute2 website,” https://wiki.linuxfoundation.org/networking/iproute2.
[17] usid linux kernel implementation. [Online]. Available:

https://netgroup.github.io/srv6-usid-linux-kernel/
[18] FD.io. Vector packet processor. [Online]. Available:

https://wiki.fd.io/view/VPP
[19] DPDK. [Online]. Available: https://www.dpdk.org/
[20] SRv6 MicroSID (uSID) Interoperability Demonstration. [Online].

Available: https://www.youtube.com/watch?v=pVFkmwYIgmo
[21] P. Consortium. Behavioral model (bmv2). [Online]. Available:

https://github.com/p4lang/behavioral-model
[22] Mininet: an instant virtual network on your laptop (or other pc).

[Online]. Available: http://mininet.org/
[23] Cloudlab. [Online]. Available: https://www.cloudlab.us/

[24] Trex: Realistic traffic generator. [Online]. Available: https://trex-
tgn.cisco.com

[25] A. Abdelsalam et al., “Performance of IPv6 Segment Routing in Linux
Kernel,” in 1st Workshop on Segment Routing and Service Function
Chaining (SR+SFC 2018) at CNSM 2018, Rome, Italy, 2018.

[26] A. Abdelsalam et al., “SRPerf: a Performance Evaluation Framework for
IPv6 Segment Routing,” accepted to IEEE Transaction on Network and
Service Management, preprint available on ArXiv: arXiv:2001.06182,
2020.

[27] B. Networks. Product brief tofino page. [Online]. Available:
https://barefootnetworks.com/products/brief-tofino/

[28] P. Ventre et al., “Segment Routing: A comprehensive survey of research
activities, standardization efforts and implementation results,” arXiv
preprint arXiv:1904.03471, 2019.

[29] A. Giorgetti, P. Castoldi, F. Cugini, J. Nijhof, F. Lazzeri, and G. Bruno,
“Path encoding in segment routing,” in 2015 IEEE Global Communica-
tions Conference (GLOBECOM). IEEE, 2015, pp. 1–6.

[30] F. Lazzeri, G. Bruno, J. Nijhof, A. Giorgetti, and P. Castoldi, “Efficient
label encoding in segment-routing enabled optical networks,” in 2015
International Conference on Optical Network Design and Modeling
(ONDM). IEEE, 2015, pp. 34–38.

[31] A. Giorgetti, A. Sgambelluri, F. Paolucci, and P. Castoldi, “Reliable
segment routing,” in 2015 7th International Workshop on Reliable
Networks Design and Modeling (RNDM). IEEE, 2015, pp. 181–185.

[32] S. Salsano, L. Veltri, L. Davoli, P. L. Ventre, and G. Siracusano,
“Pmsr—poor man’s segment routing, a minimalistic approach to seg-
ment routing and a traffic engineering use case,” in NOMS 2016-2016
IEEE/IFIP Network Operations and Management Symposium. IEEE,
2016, pp. 598–604.

[33] F. Duchene, M. Jadin, and O. Bonaventure, “Exploring various use
cases for ipv6 segment routing,” in Proceedings of the ACM SIGCOMM
2018 Conference on Posters and Demos, ser. SIGCOMM ’18. New
York, NY, USA: Association for Computing Machinery, 2018, p.
129–131. [Online]. Available: https://doi.org/10.1145/3234200.3234213

[34] W. Cheng, Z. Li, C. Li, F. Clad, L. Aihua, C. Xie, Y. Liu, and Shay,
“Generalized SRv6 Network Programming for SRv6 Compression,”
Internet Engineering Task Force, Internet-Draft draft-cl-spring-
generalized-srv6-for-cmpr-, May 2020, work in Progress. [Online].
Available: https://tools.ietf.org/html/draft-cl-spring-generalized-srv6-for-
cmpr

[35] B. Decraene, R. Raszuk, Z. Li, and C. Li, “SRv6 vSID:
Network Programming extension for variable length SIDs,” Internet
Engineering Task Force, Internet-Draft draft-decraene-spring-srv6-
vlsid-03, Mar. 2020, work in Progress. [Online]. Available:
https://datatracker.ietf.org/doc/html/draft-decraene-spring-srv6-vlsid-03

[36] D. Lebrun, M. Jadin, F. Clad, C. Filsfils, and O. Bonaventure, “Software
resolved networks: Rethinking enterprise networks with ipv6 segment
routing,” in Proceedings of the Symposium on SDN Research, ser. SOSR
’18. New York, NY, USA: Association for Computing Machinery,
2018. [Online]. Available: https://doi.org/10.1145/3185467.3185471

[37] A. Abdelsalam, F. Clad, C. Filsfils, S. Salsano, G. Siracusano, and
L. Veltri, “Implementation of virtual network function chaining through
segment routing in a linux-based nfv infrastructure,” in 2017 IEEE
Conference on Network Softwarization (NetSoft), 2017, pp. 1–5.

[38] D. Lebrun and O. Bonaventure, “Implementing ipv6 segment routing in
the linux kernel,” in Proceedings of the Applied Networking Research
Workshop, ser. ANRW ’17. New York, NY, USA: Association
for Computing Machinery, 2017, p. 35–41. [Online]. Available:
https://doi.org/10.1145/3106328.3106329

[39] A. Abdelsalam, P. L. Ventre, A. Mayer, S. Salsano, P. Camarillo,
F. Clad, and C. Filsfils, “Performance of ipv6 segment routing in linux
kernel,” in 2018 14th International Conference on Network and Service
Management (CNSM), 2018, pp. 414–419.

[40] S. Goldshtein, “The next linux superpower: Ebpf primer,” Dublin:
USENIX Association, 2016.

[41] M. Xhonneux, F. Duchene, and O. Bonaventure, “Leveraging ebpf
for programmable network functions with ipv6 segment routing,”
in Proceedings of the 14th International Conference on Emerging
Networking EXperiments and Technologies, ser. CoNEXT ’18. New
York, NY, USA: Association for Computing Machinery, 2018, p.
67–72. [Online]. Available: https://doi.org/10.1145/3281411.3281426

[42] A. Abdelsalam, A. Tulumello, M. Bonola, S. Salsano, and C. Filsfils,
“Pushing Network Programmability to the Limits with SRv6 uSID and
P4,” in 3rd EuroP4 Workshop (EuroP4’20), 2020.

[43] S. Bidkar, A. Gumaste, P. Ghodasara, S. Hote, A. Kushwaha, G. Patil,
S. Sonnis, R. Ambasta, B. Nayak, and P. Agrawal, “Field trial of
a software defined network (sdn) using carrier ethernet and segment
routing in a tier-1 provider,” in 2014 IEEE Global Communications
Conference. IEEE, 2014, pp. 2166–2172.

[44] L. Huang, Q. Shen, W. Shao, and C. Xiaoyu, “Optimizing segment
routing with the maximum sld constraint using openflow,” IEEE Access,
vol. 6, pp. 30 874–30 891, 2018.

[45] O. Dugeon, R. Guedrez, S. Lahoud, and G. Texier, “Demonstration of
segment routing with sdn based label stack optimization,” in 2017 20th
Conference on Innovations in Clouds, Internet and Networks (ICIN).
IEEE, 2017, pp. 143–145.

[46] M.-C. Lee and J.-P. Sheu, “An efficient routing algorithm based on
segment routing in software-defined networking,” Computer Networks,
vol. 103, pp. 44–55, 2016.

