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Abstract—In this paper, we propose an accurate parallel flow
monitoring method using active probe packets. Although multiple
probe flows are monitored to measure delays on multiple paths
in parallel for most measurement applications, information of
only one probe flow of the multiple probe flows is utilized to
measure an end-to-end delay on a path in conventional active
measurement. In addition to information observed by the flow
along the path, information of other flows is also utilized for
the measurement in the proposed method. Delays on a flow
are accurately measured by partially converting the observation
results of a flow to those of another flow. Simulations are
performed to confirm that the observation results of 72 parallel
flows of active measurement are appropriately converted between
each other in the proposed method. When the 99th-percentile of
an end-to-end delay for each flow are measured, the proposed
method achieves up to 95% reduction of the error, and the error
of the worst flow among all flows are reduced by 28%.

I. INTRODUCTION

End-to-end metrics are fundamental for a network per-
formance evaluation. Traditionally, end-to-end throughput is
one of the most common performance metrics for many
applications. Real-time applications, such as audio/video con-
ferencing and IP telephony, require a low delay and stable
bandwidth on an end-to-end path, compared to traditional
applications such as e-mail, web browsing, etc. For interactive
Voice over IP (VoIP) applications, ITU-T Recommendation
G.114 [1] mentions that an end-to-end packet delay of more
than or equal to 150 [ms] harmfully affects the communication
quality. Hence, for both network managers and application
developers, an accurate measurement technique for end-to-end
metrics is required.

An active measurement in which probe packets are injected
into a network for measurement is a common method for end-
to-end metrics. Various tools have been proposed that measure
end-to-end delays [2], [3], [4], packet losses [5], [6], available
bandwidth [7], [8]. Moreover, large-scale measurement in
real networks has allowed a better understanding of various
characteristics of the networks [9], [10].

In active measurement for end-to-end delays, researchers
have tried to achieve accurate measurement without increasing
the number of probe packets [11], [12], [13] since a large num-
ber of probe packets leads to communication overheads and
an intrusiveness problem [14], [15]. Since a large delay (that
exceeds 150 [ms] as mentioned in ITU-T Recommendation
G.114 [1]) is a rare event in the modern Internet, however, it
is difficult to capture a large delay using the limited number
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Fig. 1. Parallel monitoring of multiple flows. The paths of Flow A and B
share Edge 1 and 2. If a delay is caused by Edge 2, similar delays are observed
in Flow A and B.

of the probe packets on the path. Therefore, high quantile of
delay distribution is still hard to measure.

Although multiple probe flows are monitored to measure
delays on multiple paths in parallel for most measurement
applications, only one probe flow of the multiple probe flows
is utilized to measure the end-to-end delay on a path. In
daily operations, Internet service providers are partly or wholly
monitoring end-to-end delays of the paths on their network.
Network researchers and practitioners often measure end-to-
end delays of multiple paths on a network to clarify the
characteristics of the entire network. Parallel monitoring of
multiple flows is usual for network monitoring tasks. Since
paths of flows share common parts in parallel monitoring,
observation results of a flow can include information of delays
on another path. In Fig. 1, since both paths of Flow A and B
include Edge 2, packets of flow B experience similar delay
with those of Flow A when a delay is mainly caused by
Edge 2. Therefore, the information concerning Flow B can
be utilized supplementary for improving the accuracy of the
delay measurement of Flow A.

In this paper, we propose a parallel flow monitoring method
in which delays on a flow are accurately measured by partially
converting the observation results of another flow into the
results of the flow. Congestion periods are taken from each
observation result, and they are divided into clusters for each
common edge that causes a delay. Observation results of flows



in a cluster are converted between each other. A clustering
technique in machine learning is utilized to divide them into
clusters. The proposed method does not require any internal
information of a measured network, including a topology, and
it only uses the delay of each flow. We evaluate the proposed
method though simulation, and confirm that the proposed
method achieves accurate measurement of end-to-end delays
in parallel monitoring of probe flows.

The remainder of this paper is organized as follows. Sec-
tion II explains a network model and several assumptions
of the proposed measurement method. In Section III, we
summarize a conversion process for parallel flow monitoring
and show the algorithm of the proposed method. Section IV
explains end-to-end metrics for delay using results of the
proposed method. We evaluate the proposed method using
simulations in Section V. Section VI summarizes related
works. Finally, Section VII concludes the paper and presents
future research directions.

II. NETWORK MODEL AND ASSUMPTIONS

We are interested in measuring end-to-end delays in wired
packet networks. A network considered within the scope of
this work is represented by a directed graph. An edge of a
directed graph represents a physical/virtual link and interfaces
at both ends of the link. Note that an interface includes
input/output packet queue. A vertex represents a part of a
network device other than its interfaces (e.g., a forwarding
element). A path is defined as a sequence of vertices and
edges. A packet is delivered from a source to a destination
along a path. Paths are stable in a measurement period
(generally within several minutes) since paths are not changed
frequently.

Packets are delayed at vertices or edges on a path. An
end-to-end network delay experienced by a packet consists of
four elements: propagation delay, queueing delay, transmission
delay, and processing delay. Processing delay occurs when a
packet is on vertices. The other delays occur on edges. In the
modern Internet, propagation delay and queueing delay are
dominant, and transmission delay and processing delay are
negligible [10]. In this paper, we assume that an end-to-end
delay is consisted of propagation delay and queueing delay.
Propagation delay can be regarded as a constant for a path
while queueing delay dynamically changes reflecting traffic
status. Both delays experienced by a packet on a single edge
are independent for a path that the packet passes. We assume
that edges with large queueing delay are sparse among all
edges in a network, and a ratio of periods with large queueing
delay on an edge to the other periods is small. The validity
of the assumption can be confirmed since the average link
utilization of the modern Internet is maintained low [16]. Note
that we do not assume a congested edge is unique.

Network researchers or practitioners measure end-to-end
delay on each path. To measure delay on paths, probe packets
are periodically injected for all or a part of paths on a network.
A delay experienced by a probe packet can be obtained from

the values of timestamps recorded at the source and the desti-
nation. Time synchronization of source and destination devices
is required if network researchers or practitioners measure
one-way delay. They do not need to know the topology of
a network. We first tackle development of a measurement
technique without the knowledge of the network topology
since it is more applicable, though the proposed method may
be accurate utilizing a network topology. Development of a
measurement technique with a network topology is left for
our future work.

III. SAMPLE CONVERSION TECHNIQUE USING PARALLEL
FLOW MONITORING

A. Overlap of Queueing Delay Processes

In active measurement for delay of the modern Internet, it is
important to sample information regarding congestion periods
with large delay since the ratio of the periods to the other
periods are extremely small. A delay experienced by a probe
packet of Flow A can be regarded as a sample of a virtual delay
process χA(t), which is the delay experienced by a virtual
packet injected from the source into the path of Flow A at
time t. We denote m samples by the probe packets of Flow
A as XA = {(tiA, xiA) ; i = 1, . . . ,m}, where tiA and xiA are
the injection time of the ith probe packet of Flow A and the
delay observed by the ith probe packet, respectively. Note that
xiA corresponds to χA(t

i
A). Since probe packets are injected

with constant interval, the number of probe packets injected
into a path within congestion periods are few. Although high
quantile is a key metric for delay sensitive applications such as
VoIP, fewer probe packets within congestion periods lead less
accurate measurement for high quantile of end-to-end delay.

Queueing delay processes within a congestion period on
multiple paths that have common edges often coincide with
each other. A virtual delay process χA(t) is the sum of
propagation delay χ̄A and queueing delay χ̂A(t). A congestion
period can be defined as a period where a large delay is
included in the period and a queueing delay is nonzero.
Queueing delay processes χ̂A(t) and χ̂B(t) tightly overlap if
the following three conditions are satisfied:

1) The two paths of Flow A and B have the same source;
2) Routes from the source to the last congested edge on

the paths are common like Flow A and B in Fig. 1;
3) A queueing delay that packets experience on edges after

the last congested edge can be negligible.
When the above conditions 1) – 3) hold, we see the difference
χA(t)−χB(t) is constant χ̄A−χ̄B in a congestion period since
χ̂A(t) = χ̂B(t). The overlap of queueing delay processes is
likely to occur when the sparsity of edges with large queueing
delay holds.

B. Conversion Process

If the queueing delay processes χ̂A(t) and χ̂B(t) tightly
overlap, namely the above three conditions hold, samples of
these processes can be converted mutually as shown in Fig. 2.
It is, however, difficult to discriminate the conditions 2) and



3) without using topology and queue information. We should
design a method that uses information from probe packets.

First of all, we show how to detect congestion periods
from samples obtained by probe packets. We can estimate the
propagation delay χ̄A on a path of Flow A by the minimum
value x̄A ≡ min1≤i≤m xiA since a delay is non-negative
and we assume a propagation delay is a constant. The jth
congestion period of a Flow A is observed as the jth sequence
of xiA that is larger than x̄A + xth, where the threshold xth is
a control parameter in the proposed method. The start time of
the jth congestion period is estimated as the jth injection time
among the injection times {tiA ; xi−1

A < x̄A+xth∨x̄A+xth ≤
xiA}. The end times of the jth congestion period is also
estimated as the jth injection time among the injection times
{tiA ; x̄A + xth ≤ xiA ∨ xi+1

A < x̄A + xth}.
In the proposed method, congestion periods of two flows

whose start and end times are respectively the same, and sam-
ples within the congestion periods of each flow are mutually
converted. If we can assume that a congested edge is at most
one in the entire network, i.e., strong sparsity of congested
edges can be assumed, paths with congestion periods that start
and end at the same time satisfy the conditions 2) and 3) shown
in Section III-A (We will relax the assumption later). We
consider that samples XA,j within the jth congestion period of
Flow A and samples XB,k within the kth congestion period
of B can be converted between each other if the two flows
satisfy the following conditions:

i) The two flows have the same source;
ii) The interval between the packet injection times of the

first samples in XA,j and XB,k is smaller than δ;
iii) The interval between the packet injection times of the

last samples in XA,j and XB,k is smaller than δ.
δ denotes the injection interval of probe packets, and, in
the above conditions, it is used to discriminate whether the
congestion periods of two flows start/end at the same time.
Each sample (tiB, x

i
B) in XB,k is converted into a sample of

Flow A by (tiB, x
i
B − x̄B + x̄A), since propagation delays of

Flow A and B are different even if queueing delay process are
tightly overlap.

C. Conversion Process Based on Destination’s Time
Discussions similar to Section III-A and III-B can hold

when we consider a virtual delay process ψA(t) based on
destination’s time, which is the delay experienced by a packet
that reaches the destination at time t. A queueing delay process
based on destination’s time is also defined by ψ̂A(t) = ψA(t)−
χ̄A. χA(t) and ψA(t) can be translated each other since
χA(t) = ψA(t+χA(t)). We also denote m samples of ψA(t)
on the path of Flow A as YA = {(uiA, xiA); i = 1, . . . ,m},
where uiA is the receive time of the ith probe packet at the
destination d, and xiA is the delay observed by the ith probe
packet as we defined above.

The conditions for tightly overlapping queueing delay pro-
cesses ψ̂A(t) and ψ̂C(t) are as follows:

1) The two paths of Flow A and C have the same destina-
tion;
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Fig. 2. A conversion process of two flows with congestion periods that started
and ended at the same time.

2) Routes from the first congested edge to the destination
on the paths are common like Flow A and C in Fig. 1;

3) A queueing delay that a packet experiences on edges
before the first congested edge can be negligible.

Similarly, by indicating samples within the jth congestion
period of Flow A as YA,j , the conditions for discriminating
whether the congestion periods of two flows start/end at the
same time are as follows:

i) The two flows have the same destination;
ii) The interval between the packet receive times of the first

samples in YA,j and YC,k is smaller than δ;
iii) The interval between the packet receive times of the last

samples in YA,j and YC,k is smaller than δ.
Samples within congestion periods that satisfy the above
conditions are mutually converted. The converted samples of
ψA(t) are translated into samples of χA(t) by the equation
χA(t) = ψA(t+ χA(t)).

D. Clustering Process

If multiple edges are congested at the same time, the conver-
sion process we shown in Section III-B and III-C may convert
inappropriate samples. The samples within congestion periods
expected to have the same start and end time are converted in
the conversion process. As we mentioned above, the conditions
for discriminating whether the congestion periods of two flows
start/end at the same time are different from these for tightly
overlapping queueing delay processes (the former is shown
in Section III-B and the latter is shown in Section III-A).
Therefore, even if we convert samples based on the conditions
shown in Section III-B, the queueing delay processes behind
the samples do not necessarily overlap.

For instance, in Fig. 1, if a congestion period caused by
Edge 3 starts and ends within a congestion period caused by
Edge 2, we should not convert the samples of Flow B into
those of Flow A (see Fig. 3). In this case, since the virtual
queueing delay processes for Flow A and C tightly overlap,
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Fig. 3. A case of multiple congested edges. A congestion period caused by
Edge 3 starts and ends within a congestion period caused by Edge 2 on a
network shown in Fig. 1. The virtual delay processes for Flow A and B do
not overlap though those for Flow A and C overlap tightly. The samples of
Flow B should not be converted into the samples of Flow A.

we can convert the samples of Flow C into those of Flow A.
However, the virtual queueing delay processes for Flow A and
B do not overlap since packets of Flow B do not experience a
delay caused by Edge 3. The conversion process described in
the previous sections converts the samples of Flow B into those
of Flow A. Hence, we should remove these inappropriately
converted samples from samples of Flow A.

To remove inappropriate samples, we utilize a clustering
technique in machine learning [17]. Based on samples that
are converted, we construct clusters of flows using a clustering
technique. In the example of Fig. 3, Flow A and C should be
in a cluster, and Flow B should be in another cluster.

Since the number of samples and their intervals vary, we
transform samples of each flow into n-dimensional vectors
to use general clustering techniques. We let XB,k

A,j denote
the set of the converted samples from the kth congestion
period of Flow B into samples of the jth congestion period
of Flow A. Let FA,j be the set of sample sets that are
added to the jth congestion period of Flow A, i.e., FA,j =

{XA,j , X
B,k
A,j , X

C,l
A,j , . . . }. FA,j denotes the set of all samples∪

f∈FA,j
f in FA,j . First, we construct a directed graph with

vertices {(tf − δ, x̄A), (tl+ δ, x̄A)}∪FA,j for each congestion
period, where tf and tl denote the first and last injection times
in XA,j . In the graph, edges from a vertex (tiA, x

i
A) are toward

all vertices with injection times that are larger than tiA. The
cost of the edge from (tiA, x

i
A) to (tjB, x

j
B) is set to

1√
β2

δ2 (t
i
A − tjB)

2 + (xiA − xjB)
2

,

where β denotes a parameter of the proposed method. β
adjusts the ratio of the scale on the horizontal and vertical
axes in Fig. 4. For each flow, we search a path from the
vertex with the earliest injection time to the vertex with the
last injection time via all vertices of the flow (see Fig. 4).
The path between vertices of the flow are a solution of the
widest path problem [18]. Next, for each flow, we transform
the path into an n-dimensional vector by making the vertices
evenly spaced. The jth element of the vector is a queueing
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Fig. 4. Solutions of the widest path problem for Flow A. By solving the
problem 9 times, the first vertex is connected to the last vertex via all vertices
of Flow A.

delay when the injection time is ((j − 1)(tl − tf))/(n− 1) on
the path, where n denotes the product of the number |XA,j |
of original samples and multiplicity |FA,j | of flows. Through
the above process, we can express the samples of each flow
as an n-dimensional vector.

The proposed method constructs clusters of n-dimensional
vectors that represent samples of each flow, and samples
that are converted from flows of the different clusters are
removed. Prior work on clustering techniques has left us with
a rich collection of literature [17]. Among these techniques,
we can utilize the techniques that are able to handle high-
dimensional vectors and do not have the predefined number
of clusters as an input parameter (e.g., DENCLUE [19], G-
Means [20], Minimum Entropy Clustering (MEC) [21], etc.).
Unfortunately, it is difficult to appropriately divide clusters of
flows when the number of samples of each flow is extremely
small. When the number of samples in the congestion period
per flow is at most 1, the converted samples are removed in
the proposed method before the clustering process.

E. Scalability

In this section, we will discuss the scalability of the
proposed method. In the conversion process, the proposed
method checks whether the start and end times of any pair
of congestion periods are respectively the same. The com-
putational complexity of the process is O(N2M2), where
N and M denote the number of flows and the maximum
number of congestion periods of a flow, respectively. The
actual converting of samples requires O(NML) operations,
where L denotes the maximum number of samples in a
congestion period (i.e., L = maxA,j |FA,j |). On the other
hand, in the clustering process, the computational complexity
of composing n-dimensional vectors are O(L3K3), where K
denotes the maximum number of flows in an edge. Therefore,
the computational complexity of the proposed method other
than MEC clustering is O(N2M2 + NML + L3K3). The
average time complexity of each iteration in MEC is usually
less than O(K), and the number of iterations is usually less
than 20 when K = 800 (K in our experience shown in
Section V is quite smaller than 800) [21].



F. Limitations

As with all other measurement methods, the proposed
method has limitations. This section discusses cases where
the proposed method cannot improve accuracy by converting
samples (see Fig. 5).

• Momentary congestion: The proposal method cannot
improve accuracy by converting samples in very short
congestion periods. Basically, momentary congestion is
hard to detect since the number of probe packets that are
included in the period is small. If there is no sample of
a flow in the period, samples of the other flows cannot
be converted into the samples of the flow. Even if the
congestion is detected fortunately, the proposed method
does not convert the samples intentionally, as mentioned
in Section III-D.

• Non-sparse congestion: We have assumed sparsity of
congested edges in Section II. If congested edges are
not sparse, i.e., queueing delays are always high on most
edges, the proposed method cannot detect start and end
times of a congestion period. Even if the start and end
times are detected, queueing delay processes of flows are
not overlapped since the processes are flow specific.

• Complex routes: The proposed method cannot convert
samples between flows that are once forked and rejoined.
The condition 2) in Section III-A for overlapping queue-
ing delay processes requires that the paths are completely
common from the source to the last congested edge.
Since flows that are once forked and rejoined violate the
condition, samples in a congestion period that occurs on
an edge after a rejoin cannot be converted between each
other.

Since the proposed method cannot convert samples in the
above three cases, the result approaches to that of the conven-
tional method. The limitations do not mean that the proposed
method can be inaccurate compared with the conventional
method.

IV. END-TO-END METRICS FOR PARALLEL FLOW
MONITORING

The proposed method increases the number of samples of
a virtual delay process, and these samples can be utilized
for various metrics regarding end-to-end delay. Most of mea-
surement approaches based on active measurements can be
jointly used the proposed method since the proposed method
simply adds samples in active measurements. The samples by
the proposed method is not uniformly distributed in the time
space since samples are added in congestion periods. Hence,
it is needed to weight samples depending on multiplicity of
flows. In this section, we give examples of mean delay and
q-quantile measurement.

A weight of a sample is determined by multiplicity of flows
in the congestion period that contains the sample. The weight
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Fig. 5. Cases where the proposed method cannot improve accuracy by
converting samples. (Top left) Samples in momentary congestion are difficult
to convert since momentary congestion are hard to detect. (Top right)
Queueing delay processes caused by non-sparse congestion edges are hard to
overlap each other. Therefore, since flows are divided into different clusters,
the samples are not converted. (Bottom) If there are multiple routes between
source and a congested edge, the queueing delay processes do not overlap
since propagation delays before the congested edge differ. Hence samples
cannot be converted between each other.

of sample s is given as follows:

ws =


|FA,j |
|FA,j |

s ∈ FA,j (j = 1, 2, . . . ),

1 otherwise.

Note that FA,j is the set of sample sets that added to the jth
congestion period of Flow A and FA,j =

∪
f∈FA,j

f , as we
defined in Section III-D.

If we want to measure the mean delay on the path of Flow
A, it is measured by

1

|XA|
∑

s∈XA∪FA,∗

wsds,

where ds and FA,∗ denote delay obtained from sample s and
all samples

∪
j FA,j in all congestion periods, respectively.

For q-quantile measurement, we first calculate the following:

k = arg max
j

{
j∑

i=1

wsi ≤ q|XA|

}
,

where si denotes the sample whose delay is the ith smallest
among all samples XA∪FA,∗. Then, q-quantile of end-to-end
delay is estimated by d(sk).

Our estimators are natural extensions of the conventional
estimators [12]. The conventional estimators for the mean and
q-quantile of end-to-end delay are defined respectively as

1

|XA|
∑
s∈XA

ds,

and

d
(
s′⌊q|XA|⌋

)
,

where s′i denotes the sample whose delay is the ith smallest
of all samples XA.
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propagation delays in ms.

V. EXPERIMENTS

We perform NS-3 [22] simulations to confirm that samples
of parallel flows of active measurement are appropriately
converted between each other in the proposed method. The
topology in our simulations that is shown in Fig. 6 resembles
Internet2 topology [23]. There are 9 nodes, and they are con-
nected by physical links whose capacity are 15.552 [Mbps].
The numerical values beside the links in the Fig. 6 indicate
propagation delay, and we set them proportional to the distance
between the nodes in Internet2. While we have also performed
simulation on several simple topologies and similar results are
obtained from all simulations, the results are not shown due
to the lack of space.

The traffic in our simulation is categorized into 3 types that
are listed in Table I. These 3 types of traffic stream between
all pairs of 9 nodes (i.e. 72 flows in the entire network).
Phases of packet injection are randomized while probe packets
are injected periodically. Since the link capacity is uniformly
15.552 [Mbps], traffic intensity on a link temporally exceeds
the link capacity if two or more flows of burst traffic are joined
at the link. Since the maximum queue size is set significantly
large, a buffer overflow does not occur though this temporal
capacity shortage causes queueing delays. The simulation time
is 42 [s] and we only use the data from 20 [s] to 42 [s].

The parameters of the proposed method are set as follows.
The threshold xth and parameter β are set to 0.01 [s] and 0.16,
respectively. We use MEC for clustering, and its parameters
α in α-entropy and the expected number e of clusters are
set to 0.001 and 10, respectively. Although we have tried
using DENCLUE and G-Means, the same result as that of the
conventional method is obtained since all flows are divided
into different clusters. This is because DENCLUE cannot
appropriately estimate the density of data due to the small
number of flows. On the other hand, G-Means assumes that
Gaussian distribution of data, though our data do not follow
Gaussian distribution.

To confirm that the proposed method appropriately converts
samples of the other flows into that of a flow, we depict
examples of samples by the conventional and the proposed
method in Fig. 7. The examples shown in Fig. 7 are the
samples of Flow ID 5-3 and 6-4. In the figure, we only
depict a period (from 37.0 [s] to 41.0 [s] for Flow ID 5-3
and from 20.0 [s] to 22.0 [s] for Flow ID 6-4) when one of

TABLE I
TYPES OF TRAFFIC IN OUR SIMULATION.

Stationary Packet size 600 [Byte]
Traffic pattern Poisson arrivals

Traffic intensity 388.8 [Kbps]
(4% of a link capacity)

Burst Packet size 500 [Byte]
Traffic pattern On/off process with periodic

arrivals in burst periods
Traffic intensity 8,000 [Kbps] in burst periods

0 [bps] in idle periods
Burst period Exponential distribution

with mean 0.1 [s]
Idle period Exponential distribution

with mean 0.4 [s]
Probe Packet size 74 [Byte]

Traffic pattern Periodic arrivals
Packet intervals δ 200 [ms]

large delays is observed. We can confirm that the number of
samples of the proposed method is larger than those of the
conventional method, and the samples tightly approximate the
virtual delay. Removed samples in the clustering process are
indicated by the green plus marker, and most of them are not
on the virtual delay. Hence, it is confirmed that the clustering
process removed inappropriate samples.

We also evaluate the accuracy of the proposed method
when the 99th-percentile of end-to-end delay is measured. The
simulation is repeated 10 times by changing the phase of the
probe packet injection time. The true value of 99th-percentile
and the number of the converted samples are displayed in
Fig. 8 (Top) and (Middle), respectively. We display only flows
whose 99th-percentile of delay exceeds 100 [ms]. Flow ID
s-d in the figure is composed of source s and destination d
of the flow. The number of original samples that are obtained
from probe packets is 110 samples, and they are not included
in Fig. 8 (Middle). Similarly, the samples that are removed
in the clustering process are not included in the figure. Up
to 78 samples are converted into samples of a flow, and
it is confirmed that the number of the converted samples
tends to be larger if a flow has large delay. Root Mean
Squared Errors (RMSE) of 99th-percentile measurement of
end-to-end delay are calculated, and the result is shown in
Fig. 8 (Bottom). The error bars represent 95% confidence
intervals. The proposed method provides up to 95% reduction
of RMSE (the maximum reduction rate for flows is achieved
at Flow ID 8-2). Additionally, the RMSE reduction rate of
the worst flow is reduced by 28% (The ratio of RMSE of
Flow ID 0-7 in the proposed method to that of Flow ID 5-3
in the conventional method). Compared with the conventional
method, nearly equivalent or higher accuracy is achieved for
most of the flows. The flows whose RMSE are almost 0 did
not experience large delay.

To verify the effect of probe packet intervals δ on the
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Fig. 7. Samples of the proposed method and the conventional method. While
the number of samples in the conventional method is small, the number of
samples in the proposed method is larger. Samples that are not on the virtual
delay are appropriately removed by the clustering technique. (Top) Flow ID
5-3. (Bottom) Flow ID 6-4.

performance of the proposed method, we compare RMSE
of 99th-percentile of end-to-end delay by changing probe
packet interval δ from 0.1 to 1.0 [s]. Except for the probe
packet intervals, the simulation settings are unchanged from
the settings shown in Table I. The results are shown in Fig. 9.
It is confirmed that the values of maximum RMSE reduction
rate for flows are high, though RMSE reduction rate of the
worst flow and median of RMSE reduction rate occasionally
decrease to nearly 0.

Next, to confirm the dependency of RMSE on parameters
of MEC, we calculate the maximum RMSE reduction rate
for flows, the RMSE reduction rate of the worst flow, and
median of RMSE reduction rate by changing the parameters.
The probe packet intervals δ is set to 0.2 [s], and the other
parameters except for α-entropy and the expected number e
of clusters are not changed from the first experiment whose
results are shown in Fig. 8 in this section. The results when
we change α from 10−5 to 10−1 are shown in Fig. 10 (e is
set to 10). It is confirmed that the RMSE is independent of α
parameter from the figure. The results when we change e from
1 to 25 are shown in Fig. 11 (the parameter α is set to 0.001).
The results are unchanged unless e is set to 1. e = 1 means that
vectors are not divided into clusters in the clustering process,
and that is an unreasonable value for the expected number of
clusters.

Finally, we verify the dependency of the performance of
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Fig. 8. (Top) The true values of 99th-percentile of delay. Only flows whose
99th-percentile of delay exceeds 100 [ms] are displayed. (Middle) The number
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not include the original samples of the flow. The number of the converted
samples tends to be larger if a flow has large delay. (Bottom) RMSE of
the 99th-percentile measurement for each flow. The error bars represent
95% confidence intervals. The proposed method provides up to 95% reduction
of RMSE, and nearly equivalent or higher accuracy is achieved for most of
the flows.
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Fig. 9. Dependency of RMSE on probe packet intervals δ. The proposed
method maintains high values of maximum RMSE reduction rate for flows,
although RMSE reduction rate of the worst flow and median of RMSE
reduction rate decrease to nearly 0 on occasion.

the proposed method on parameter β. We calculate RMSE of
end-to-end delay by changing β from 0.005 to 2.56. Except
of parameter β, the parameters in the experiment are not
changed from the first experiment in this section. The result
of the experiment is shown in Fig. 12. The maximum RMSE
reduction rate for flows increases as parameter β increases,
and stabilizes after β becomes 0.16. Although the figure
indicates that larger β is better for the maximum RMSE
reduction rate for flows, we have observed an inappropriate
conversion of samples when β is between 0.64 and 2.56. The
RMSE reduction rate of the worst flow and median of RMSE
reduction rate decrease due to the inappropriate conversions.
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Fig. 11. Dependency of RMSE on the expected number e of clusters of MEC.
The maximum RMSE reduction rate for flows is stable at 95% for all e. The
other indexces are almost unchanged for all e except for e = 1.

Therefore, the values between 0.08 and 0.32 are good values
of β.

VI. RELATED WORKS

There is a rich collection of literature that aims at measuring
end-to-end delays [2], [3], [11], [12], [4], [15]. Some prior
works [11], [12] have tried to estimate high quantile of end-
to-end delays by active measurement. Choi et al. [11] has
proposed a scheme that estimates high quantile with bounded
errors. The scheme allows us to know the minimum number of
probe packets needed to bound the error of quantile estimation
within a prescribed accuracy. Sommers et al. [12] also have
proposed an estimator of high quantile. Since the estimator
provides confidence intervals, we can tune the number of probe
packets to achieve the required accuracy. Unlike the proposed
method, these prior works utilize only a single flow for an
end-to-end delay on a path.

The effect of probe packets on the path quality have been
also studied [24], [14], [25], [26], [15]. References [24], [25]
have shown that an arrival process of the probe packets affects
accuracy of end-to-end delay/loss measurement. Degradation
of measurement accuracy caused by probe traffic load have
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Fig. 12. Dependency of RMSE on parameter β. The performance of the
proposed method is equivalant to or better than that of the conventional method
for various β though sufficien improvement in accuracy cannot be obtained
for small β.

been studied in references [14], [26], [15]. The limitation of a
single flow measurement can be understood by these works.

VII. CONCLUSION

In this paper, we proposed a parallel flow monitoring
method that achieves accurate measurement by partially con-
verting the observation results each other. The proposed
method adds to samples of a flow from the samples of the
other flows, and removes inappropriate samples using a clus-
tering technique in machine learning. We demonstrated that
the proposed method can properly add and remove samples
through simulations. When the 99th-percentile of end-to-end
delay is measured, the proposed method provides up to 95%
reduction of errors, and the error of the worst flow among all
flows is reduced by 28%.

In future work, we will evaluate our method using real
network traffic. Additionally, we will develop a method that
utilizes a network topology for the conversion process. By
using the knowledge of the topology, the samples that are not
added in the proposed method can be added. Moreover, our
method can be extended to loss measurement.
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