
A Software-De�ned Firewall Bypass for

Congestion Of�oading
Florian Heimgaertner, Mark Schmidt, David Morgenstern, and Michael Menth

Chair of Communication Networks, University of Tuebingen, Tuebingen, Germany

Email: {�orian.heimgaertner,mark-thomas.schmidt,menth}@uni-tuebingen.de, david@morgenstern.net

Abstract�With increasing network bandwidths, stateful �re-
walls are likely to become communication bottlenecks in net-
works. To mitigate this problem, we propose to bypass selected
traf�c around �rewalls using software-de�ned networking (SDN).
We discuss various approaches and elaborate the following
concept. A controller samples outgoing packets at the �rewall
using sFlow to detect congestion. In case of congestion, �ows
already admitted by the �rewall are identi�ed and of�oaded
at an appropriate rate by installing �ow-speci�c bypass rules
on an OpenFlow-capable switch. We suggest two different algo-
rithms to select appropriate �ows and provide a proof-of-concept
implementation in a network testbed using the Ryu controller
framework. Experimental results illustrate the system behavior
at different load levels with and without of�oading. We provide
an analytical system model to predict the of�oading performance
for other system parameters than experimentally evaluated and
validate the model with our experimental results. A parameter
study suggests that the of�oaded traf�c rate may be a multiple
of the �rewall’s capacity if the switch supports suf�cient �ow
rules or is able to match for TCP �ags.

I. INTRODUCTION

Access ports with 1 Gb/s are becoming more and more com-

mon in business and campus Ethernet networks. To transport

the traf�c generated by the endpoints, backbones and uplink

connections are upgraded to 10 Gb/s or higher bandwidths.

This upgrade comes with the need for new network hardware.

While Ethernet switches with 1 Gb/s and 10 Gb/s interfaces

are affordable, �rewalls handling 10 Gb/s and more are expen-

sive. To bene�t from increased network bandwidths without

replacing existing �rewall hardware, we propose to bypass

some of the traf�c around the �rewall using software-de�ned

networking (SDN). This makes sense because �rewalls can

handle many �ows but are limited in transmission speed while

commodity OpenFlow switches support only a limited number

of �ow rules in hardware, but operate at high bandwidth.

The approach also reduces the security level but only to

a moderate extent because most checks are performed by

�rewalls during the setup of a �ow and the bypasses are used

only for individual �ows that have already been permitted by

the �rewall.

The contribution of this work is a discussion of techniques

and prerequisites for �rewall bypassing. We further concen-

trate on an approach where a controller samples outgoing

packets at the �rewall to detect congestion. In case of con-

gestion, the controller identi�es appropriate �ows and of�oads

them by installing �ow-speci�c rules on a switch to bypass the

�rewall. We suggest algorithms to detect the congestion on the

basis of sampled rates and to determine appropriate of�oading

rates such that available �ow rules are effectively leveraged. To

provide a proof-of-concept, we implement the proposed mech-

anism using OpenFlow and sFlow in a networking testbed.

Experimental results illustrate the system behavior at differ-

ent load levels with and without of�oading. The of�oading

performance in terms of of�oadable traf�c is limited in our

experimental setup but depends on hardware capabilities and

traf�c patterns that may change in the future. We provide an

analytical system model to predict the of�oading performance

for different system parameters and validate the model with

our experimental results. A parameter study suggests that

the of�oaded traf�c rate may be a multiple of the �rewall’s

capacity if the switch supports suf�cient �ow rules or is able to

match for TCP �ags. The suggested mechanism distinguishes

from other work as it can be integrated in legacy networks

that are not fully SDN-enabled. Another salient feature of

this approach is that signaling with the �rewall is not needed,

i.e., the �rewall is handled as a black box which makes the

approach independent of a speci�c �rewall product.

This work is structured as follows. Section II provides an

overview of the technolgy used. Section III reviews related

work. In Section IV, we discuss various concepts for �rewall

bypassing and Section V explains the algorithms used for

the approach explained above. Section VI reports a proof-of-

concept implementation and illustrates the system behavior

through experimental results. Section VII presents a theo-

retical performance analysis including numerical results and

Section VIII concludes this work.

II. TECHNOLOGICAL BACKGROUND

SDN separates the data plane and the control plane by

shifting intelligence from distributed forwarding nodes, i.e.,

routers or switches, to a logically centralized controller [1].

While non-SDN switches populate forwarding tables by learn-

ing addresses, an SDN controller installs a set of forwarding

rules on SDN switches either on initialization or during run-

time. Flow rules may be associated with a timer so that they are

automatically removed from the forwarding table of the switch

when they have not been used for the speci�ed time. The

communication channel between SDN controllers and SDN

switches is called southbound interface. The Open Networking

Foundation (ONF) has standardized the OpenFlow [2] protocol

for that purpose. Our controller implementation is based on

the Ryu SDN framework [3] which supports all OpenFlow

versions from 1.0 up to 1.5 and sFlow.

978-3-901882-98-2 c
 2017 IFIP



sFlow [4] is a vendor-independent technology for monitor-

ing network traf�c. Measurement data are sent by sFlow agents

in sFlow datagrams to sFlow collectors. The agent is part of

the switch while the collector can be part of a monitoring

system or, in our case, an SDN controller. We use the packet

�ow sampling method of sFlow version 5 and the raw packet

header datagram format.

III. RELATED WORK

The authors of [5] propose traf�c-aware �ow of�oading

(TFO) to of�oad heavy hitters from routers to specialized

forwarding hardware. A similar approach is CacheFlow [6]

which uses a high-speed SDN switch with limited hardware

�ow tables like a cache for a slower software SDN switch

supporting a larger number of �ow rules. This way, less

frequently used rules are of�oaded to software switches. Both

approaches are aggregate-based, e.g., TFO works on the level

of BGP pre�xes, which is not acceptable for our purpose as

�ows should be permitted individually if they are accepted by

the �rewall.

The authors of [7] use SDN to implement a reactive,

stateful �rewall. SDN switches are con�gured to enforce

security policies using forwarding rules. The concept was

implemented with Ryu and tested using Mininet and Open

vSwitch (OVS). A similar concept [8] was implemented using

the POX controller and OVS. However, these approaches are

limited by controller performance and might not work with

hardware switches.

Network function virtualization (NFV) enables replacing

middlebox hardware like �rewalls by software components

on virtual machines (VMs). VNGuard [9] is a framework for

ef�cient provisioning and management of NFV �rewalls. The

framework allows for dynamic placement of NFV �rewalls

inside a network via recon�guration of the network topology

using SDN.

The authors of [10] present a combination of an NFV

�rewall and an SDN-based �rewall. A pure SDN �rewall as

described in [7] monitors the state of a connection using an

SDN controller. Therefore, handshake packets are transmitted

to the controller causing additional delay because the control

channel is relatively slow. An NFV �rewall is limited in

throughput by the fact that all processing is done in software.

The combined SDN/NFV �rewall presented in [10] initially

forwards traf�c via an NFV �rewall which tracks the state

of all accepted connections. For very large connections, the

SDN-based strategy takes over without additional delay as the

handshake was carried out via the NFV �rewall.

NFShunt [11] is an extension of the Science DMZ [12]

concept. The authors propose a bypass for a Linux-based

software �rewall using SDN. NFShunt extends the �rewall

rule set so that the bypassing rules can be speci�ed in the

�rewall con�guration.

All the strategies described above require a network infras-

tructure which is completely based on SDN-capable switches,

but this is not the case in many current installations. Therefore,

their applicability is limited. We aim at relieving �rewalls from

congestion in existing networks while only requiring minor

changes to the network infrastructure. While our work appears

similar to the one presented in [10], a major difference is that

we consider the �rewall as a black box.

A patent held by Google [13] suggests to bypass every

�ow that has been accepted by the �rewall using SDN, i.e.,

the �rewall serves mainly as decision engine. However, this

proposal ignores that switches have only a limited number

of �ow rules and that traf�c of�oading in the absence of

congestion just reduces the security level. Our approach is

similar in the sense that it uses the �rewall as decision engine,

but it strives to bypass largest �ows only in the presence of

congestion for two reasons. First, this approach makes best use

of available �ow rules on the switch. Second, it compromises

the security level only to avoid service degradation. For this

purpose we propose robust and effective measurement and

management algorithms.

IV. FIREWALL BYPASS

In this section we clarify some terminology, explain gen-

eral �rewall usage, and propose static and dynamic �rewall

bypassing for selected traf�c.

A. Terminology and Usage

A �ow describes a directed connection between two end-

points identi�ed by the 5-tuple (src.-addr., dst.-addr., protocol,

src.-port, dst.-port). For connection-oriented transport pro-

tocols like TCP, a connection comprises a pair of �ows,

each �ow representing one direction. A �rewall is a network

middlebox which applies rules and policies to decide whether

certain packets are permitted to pass. Stateless �rewalls just

apply static �lters to individual packets. In contrast, stateful

�rewalls track connections and apply rules to packets in the

context of the connection they belong to.

Firewalls are commonly used to shield a layer-3 network

which is denoted as inside while the outside of the network

is denoted as outside. The objective is to protect the inside

against malicious traf�c from outside and to prevent undesired

actions from inside to the outside. Normally, inside and outside

are connected by a router.

Two different operation modes exist for �rewalls, transpar-

ent mode and routed mode. In transparent mode, a �rewall acts

like a layer-2 bridge, i.e., it is invisible to layer-3 devices. In

routed mode, a �rewall acts like a layer-3 router.

Firewall bypassing means that selected traf�c is diverted

around the �rewall to reduce its forwarding load, i.e., the

traf�c is of�oaded. It requires a network element on the path

that conditionally steers traf�c around the �rewall depending

on �ow descriptors. We use the term bypass to describe a bi-

directional path between the inside and outside networks that

does not traverse the �rewall. For the action of installing a

bypass for a pair of �ows we use the term of�oading. The

bypass is implemented using a switch connected to the inside

network, the �rewall, and the outside network. In transparent

mode, the switch is connected to the outside network via

a router. As in routed mode the bypass does not only skip



the �ltering part of the �rewall, but also the router part, the

switch needs to implement parts of the router functionality,

such as rewriting MAC addresses. This makes the bypass

implementation more complicated. Therefore, we consider a

transparent �rewall scenario in this paper.

B. Static Firewall Bypass

Static �rewall bypassing means that some ranges of �ow

descriptors are permitted a priori and are diverted around

the �rewall. These ranges can be denoted as a whitelist and

con�gured in the access control lists of a managed switch. The

whitelisted traf�c may directly be forwarded from inside to

outside and vice-versa while other traf�c is �rst forwarded to

the �rewall. This is illustrated in Figure 1(a). The solid green

line represents a trusted �ow that can bypass the �rewall by

whitelist entry while the �ow represented by the dashed red

line goes through the �rewall. Whitelisting is effective if a

large fraction of the traf�c can be considered trusted a priori.

(a) A switch may bypass traf�c de�ned by a static whitelist.

(b) A controller may learn via sFlow about congestion and of�oadable �ows
on the �rewall and dynamically install bypassing rules on an SDN switch.

Fig. 1: Bypass options for transparent �rewalls.

C. Dynamic Firewall Bypass

Dynamic �rewall bypassing means that individual �ows

may be of�oaded after being permitted by the �rewall. This

is acceptable as the most important checks are performed by

a �rewall during the setup phase of a connection, afterwards

a connection is rather unlikely to be blocked by the �rewall.

Therefore, we de�ne a �ow as of�oadable if at least one packet

has passed the �rewall after the setup phase.

A typical scenario is depicted in Figure 1(b). An SDN-

capable switch steers traf�c through a transparent �rewall

before leaving or entering the inside network. An SDN con-

troller installs per-�ow bypassing rules on the switch so that

selected �ows permitted by the �rewall are forwarded directly

from inside to outside and vice-versa. A challenge is that

OpenFlow-capable switches support only a moderate number

of �ow rules. Therefore, bypassing should be applied only

during periods of congestion and to largest possible �ows.

To detect congestion and to learn about of�oadable �ows, we

use sFlow [4] to sample outgoing packets on speci�c ports

of the switch and export their headers to the SDN controller.

When the controller detects congestion and has identi�ed an

of�oadable �ow, it can install forwarding entries at the switch

to bypass that �ow. As �ow rules are uni-directional, two

different �ow rules are needed for inbound and outbound

traf�c of a TCP connection.

A simple idea to deal with the shortage of �ow rules on

OpenFlow-capable switches is to remove the bypass for a

speci�c �ow when the �ow becomes silent and to relocate

it to the �rewall such that future packets of that �ow are

again checked by the �rewall. However, this does generally

not work in practice. If the state of an of�oaded �ow has timed

out on the �rewall, the �rewall drops packets after relocation.

If the state has not yet timed out, the �rewall still drops the

packets for out-of-window TCP sequence numbers. Therefore,

relocation of previously of�oaded �ows back to the �rewall is

not feasible.

V. ALGORITHMS FOR SDN-BASED FIREWALL BYPASSING

In this section we explain algorithms for SDN-based �rewall

bypassing. The SDN controller learns about the load on

the �rewall by traf�c sampling using sFlow. Based on this

information, the controller decides when and which speci�c

rule should be installed on the switch to bypass a certain �ow.

We offer a random and an intelligent strategy to select �ows

for of�oading.

A. Load Measurement

We use sFlow to export the headers of every nth
s packet

leaving the switch on a speci�c port to the controller. The

arrival time and size of the sampled packets serve as input for

rate measurement using TDRM-UTEMA for time-dependent

rate measurement [14], yielding an estimate of the current traf-

�c rate on the �rewall. It may be expressed as sampled packet

rate r
p
F (packets/s) or as sampled byte rate rb

F (bytes/s). We

set TDRM-UTEMA’s memory to MF = 5 s which essentially

determines the time scale of the measurement process. The

memory is chosen in the order of delay perceived for a packet

delivery during congestion including retransmissions.

B. Of�oading Algorithm

The limited number of �ow rules on the switch prohibits

the of�oading of an arbitrary number of �ows. The resulting

challenge is to decide when a certain �ow should be of�oaded.

We �rst determine the number of installable bypasses and

the time after which they may be reused. Then, we explain

under which conditions of�oading is activated and derive an

appropriate of�oading rate.

1) Of�oading Requirements: Of�oading of a TCP connec-

tion requires two �ow rules on the switch: one to bypass

outbound traf�c coming from inside and one to bypass in-

bound traf�c coming from outside. Therefore, the number of

available rules on the switch nr allows for nby = nr

2 bypassed

connections.



2) Reuse Time of Flow Rules: We consider the time

treuse = trct + tout + taoh after which a �ow rule is again

available on the controller for of�oading another �ow. Thereby

trct denotes the remaining completion time of the �ow, i.e.,

the time from its of�oading start until its last packet. If the

�ow rule was unused for tout time, it is deinstalled from the

switch. That time is a con�guration parameter. Finally, taoh

accounts for additional overhead that occurs, e.g., because �ow

rules are deinstalled in batches.

3) Detection of (Imminent) Overload: We consider the

�rewall as highly loaded when the utilization of the forwarding

capacity Cb
F (bytes/s) exceeds a con�gured high-load threshold

TH = 0:8. Furthermore, we use rb
F > TH �Cb

F as precondition

for of�oading. The condition is checked whenever a new

sample is received. A time-averaged fraction of high-load

situations is tracked by a moving average and denoted as H .

The UTEMA method [14] is used for that purpose with a

memory of MH = 2 � treuse because the intent is to smooth

of�oading over treuse time. Details of this smoothing are

explained in the next paragraph.

4) Target Of�oading Rate: The scarcity of potential by-

passes limits the maximum average of�oading rate to rreuse
off =

nby

treuse
over the reuse interval. Taking into account that traf�c

is of�oaded only for a fraction H of the time, the sustainable

of�oading rate is rsus
off =

nby

H�treuse
. This rate can be very

large when imminent congestion is rarely observed so that

available bypasses can be quickly consumed. To avoid too

fast exhaustion, we require that the remaining bypasses nrem
by

suf�ce for a short smoothing time tssm, which leads to a

smoothed of�oading rate rssm =
nrem
by

tssm
. Combining both

conditions leads to a target of�oading rate of

roff = min
�

rsus
off ; rssm

off

�

= min

�

nby

H � treuse
;

nrem
by

tssm

�

: (1)

C. Random Of�oading (ROff)

Through packet sampling with sFlow, the controller knows

about �ows traversing the �rewall. To avoid of�oading inactive

�ows, the controller of�oads a �ow only when it receives a

sampled packet from it. Moreover, a TCP �ow is of�oaded

only if it is fully established, i.e., if the SYN �ag of the

sampled packet is not set.

In the absence of (imminent) congestion, �ows are generally

not of�oaded. In the presence of (imminent) congestion, the

�ow of a sampled packet is of�oaded with a probability poff

that helps to meet the target of�oading rate roff . This target

of�oading probability is computed by poff =
roff

rp

F

.

As all sampled packets are treated equally, we call this

strategy random of�oading (ROff). Nevertheless, long �ows

are sampled with a higher probability than small �ows, caus-

ing higher of�oading probabilities for larger �ows, which is

bene�cial for of�oading effectiveness.

D. Intelligent Of�oading (IOff)

To improve the of�oading effectiveness, we propose an

alternative of�oading algorithm that selects longest possible

�ows. We call it intelligent of�oading (IOff). It pursues the

rationale that �ows for which many sampled packets have been

received tend to be large and run longer than other �ows.

With every sample arrival, the controller records �ows from

which it received sampled packets in a �ow list. A counter

cf indicates the number of sampled packets received for a

�ow f . A �ow is removed from the list if it is of�oaded

or if no further sampled packet has been received from that

�ow for longer than tmax
list = 2 s. In addition, the maximum

counter value cmax is determined with every sampled packet

and a moving average cavg
max over consecutive values of cmax is

tracked using UTEMA [14] with a memory of Mcntr = 0:5 s.

The memory is chosen to cover multiple packet samples on

the one hand and to quickly forget about past �ows on the

other hand. Experiments have shown that results are rather

insensitive to the choice of Mcntr.

The following actions are performed only in the presence

of (imminent) congestion. The of�oading probability poff

is computed and an accumulated of�oading probability pacc
off

is incremented by that value. The accumulated of�oading

probability pacc
off is zero at system start. If pacc

off is positive

and the counter of the sampled �ow is the largest in the

�ow list, the �ow is of�oaded. Otherwise, the sampled �ow

is of�oaded with a modi�ed of�oading probability pmod
off =

pacc
off � min

�

1;
� cf

cavg
max

�k
�

with k = 3. We tested other values

of k without signi�cant difference. When a �ow is of�oaded,

the accumulated of�oading probability is decremented by 1.

VI. PROOF-OF-CONCEPT IMPLEMENTATION AND

EXPERIMENTAL RESULTS

In this section, we demonstrate the feasibility of the pro-

posed approach with a proof-of-concept (PoC) implementa-

tion. We report encountered challenges and provide experi-

mental results.

A. Proof-of-Concept Implementation

For our PoC implementation we use the networking testbed

illustrated in Figure 2. It comprises an OpenFlow-capable

switch, a transparent �rewall, a traf�c source, a traf�c sink,

and an OpenFlow controller.

An inside host is interconnected via a switch and a router

with an outside network. The default con�guration of the

switch diverts all traf�c leaving or entering the inside network

through the �rewall before forwarding it to the router or

the inside host. A controller host is connected to the switch

and controls the forwarding tables of the switch using the

OpenFlow protocol.

KVM [15] and libvirt [16] are used for virtualization.

The VMs for the controller, the inside host, and the outside

host each have a dedicated physical network interface card

(NIC) using PCI pass-through. The router VM uses two

physical NICs. Each VM is assigned 1 GB RAM and two CPU

cores. We use an HP ProCurve 5412zl with v2 modules as

OpenFlow-capable switch and a Cisco ASA 5550 as a stateful

�rewall.

The physical machine and the VMs use the Ubuntu [17]

Linux distribution as operating system. The controller runs an



Fig. 2: The PoC implementation uses a commodity PC, an OpenFlow-capable
switch, and a hardware �rewall. An inside and outside VM are connected
through a router with an OpenFlow switch and a transparent �rewall in
between that may be bypassed through a controller application.

own application based on Ryu [3] written in Python. It imple-

ments both random and intelligent of�oading as described in

Section V and is connected to the controller port of the switch.

The inside host runs an HTTP client and the outside host runs

an instance of the nginx [18] web server. The HTTP client is

also written in Python. It requests �les from the web server

according to a Poisson process using appropriate parameters.

In the experiments, downloads are performed in parallel if they

cannot be fully served before the client requests new �les from

the server.

B. Experience of Technical Limitations

During experimentation, we faced several technical limita-

tions of the PoC setup. Many of them are due to the usage

of available hardware or our testbed setup, some others are of

general nature and exclude more advanced bypass solutions.

Through experimentation we learned that at most 2042

layer-4 �ow rules can be installed in hardware tables on the

switch limiting the number of bypasses to 1021. However,

some OpenFlow-capable switches can support up to 20000

�ow rules [19]. This is still a rather low value and due to

the hybrid switch design. Software-based OpenFlow switches

can support signi�cantly more �ow rules with the drawback

of lower forwarding performance.

According to the manual, ns for sFlow sampling may be

as small as 50. However, we conducted preliminary tests that

showed signi�cant inaccuracies on our testbed. At a port speed

of 100 Mb/s, sFlow can adhere to its con�gured sampling rate

only for ns � 147. To add a safety margin, we chose ns = 200
for the experiments.

We need to sample packets leaving the �rewall, but sFlow

can only sample outgoing packets on a switch port. Therefore,

in our PoC implementation traf�c from the �rewall is fed

to another switch port for sampling purposes before being

forwarded to its actual destination (see Figure 2).

A �rewall keeps per-�ow states. They are removed either at

�ow termination, which is detected through TCP �ags (FIN,

RST), or through timeouts that are usually set to 3600 s. Open-

Flow can also match for TCP �ags. However, this feature is

not available prior to Version 1.5, and, therefore, not supported

by most switches. We use Version 1.3 in our experiments.

Therefore, of�oading rules on the switch should be con�gured

with a timeout value of tout = 3600 s to avoid that �ows on

the switch are blocked before they would be blocked on the

�rewall. As a result, the major fraction of rules installed on the

switch belong to terminated �ows and wait for a timeout. This

is a rather inef�cient usage of scarce forwarding resources. We

set tout to a smaller value of 300 s in our experiments to allow

short runs of 60 minutes.

Some �rewalls, e.g., Cisco ASA, implement source port

randomization. If this feature is enabled, the �rewall replaces

the TCP source port for outgoing packets of a �ow and

performs the reverse operation for the TCP destination port of

incoming packets. If a �ow is of�oaded from the �rewall, the

modi�cation is no longer performed. Then, endpoints cannot

match the packets of the established �ow and drop them.

Therefore, source port randomization must be disabled to

facilitate of�oading. A similar feature exists for initial TCP

sequence numbers, which must also be disabled.

C. Parametrization of Experiments

For experimentation, we apply the parameters in Table I.

We limit the throughput of the �rewall to Cb
F = 100Mb/s by

connecting its inside port via a 100 Mb/s link to the switch.

For load measurement, sFlow is con�gured to sample every

nth
s = 200 packet forwarded from the �rewall to the inside

VM. The traf�c rate on the �rewall is computed with TDRM-

UTEMA and a memory of MF = 1 s.

TABLE I: Parametrization of the PoC implementation for experimentation.

Cb
F

= 100Mb/s ns = 200 MF = 1 s tssm = 10 s
nr = 2000 nby = nr

2
tout = 300 s treuse = tout

TH = 0:8 MH = 2 � tout Mcntr = 0:5 s k = 3
E[B] = 1000 kB cvar[B] = 3 � variable Bmin = 10 kB

We use nr = 2000 �ow rules so that at most nby = 1000
TCP connections can be of�oaded. We work with an inactivity

timeout of tout = 300 s for installed rules on the switch. This

is the dominating component of the reuse time so that we

set the reuse time to the same value. We de�ne the high-

load threshold to be TH = 0:8 and use a memory of twice

the reuse time to compute the time-averaged fraction of high-

load with UTEMA. For intelligent of�oading, the maximum

counter is tracked using UTEMA and a memory of Mcntr =
0:5 s, and the exponent k = 3 is used for the computation

of modi�ed of�oading probabilities. Additional experiments

showed that the choice of Mcntr and k has only little in�uence

on performance results.

We model �le sizes according to a random variable B =
Bmin + BH2

which is composed of a constant component

Bmin and a random component BH2
that follows a hyper-



(a) Measured IP traf�c rate on the �rewall.

(b) Number of parallel downloads.

(c) Average download time per �ow.

(d) Fraction of aborted downloads.
Fig. 3: Impact of load and of�oading strategy on system performance.

exponential distribution. This yields the following complemen-
tary distribution function:

P(B < x ) =

8
><

>:

1 x � Bmin

p0 � e� � 0 � (x � B min ) + x > B min

p1 � e� � 1 � (x � B min ) :

(2)

We choose an expectation ofE [B ] = 1000kB, a minimum
�le size Bmin = 10 kB, and a coef�cient of variation of
cvar (B ) = 3 to model a few very large �ows and many small
ones because �ow lengths usually exhibit high variance [20].
The largest �ows have about 100 MB. We further determine
the other parametersp0=1 and � 0=1 such that p0

p1
= � 0

� 1
is

met. The same sets of �les and also the same order is used
for download in any experiment (different parameters) if not
mentioned differently. Different seeds are used for several runs
per experiment.

D. Experimental Results

The of�oading algorithms are designed to bypass �ows
only in case of (imminent) overload. Therefore, the observed
performance results depend on the traf�c load. We de�ne the
load by � = � � E [B ] whereby� is the request rate of the
HTTP client. To control the load, we vary the �ow arrival rate
value between 1

110 ms and 1
40 ms. We �rst visualize the effect

of congestion without of�oading. We analyze the operation of
of�oading algorithms for imminent and moderate congestion.
Then, we demonstrate the effect of random and intelligent
of�oading depending on the load.

(a) Measured IP traf�c rate on the �rewall.

(b) Target of�oading rate.

(c) Available bypasses.

Fig. 4: Illustration of system behavior for imminent congestion (� =
1000 kB
100 ms = 81 :92Mb/s).

1) The Effect of Congestion:We conducted experiments
over 60 min each. We performed 10 runs for every experiment
with different seed and we provide average values in Figures 3
and 6. In the following, we refer to load levels of around
80 Mb/s, 100 Mb, and 135 Mb/s as imminent, moderate, and
heavy congestion. The lines for “w/o of�oading” in Fig-
ures 3(a)–3(d) illustrate the effect of congestion depending
on different load. Figure 3(a) shows that the traf�c rate on
the �rewall increases with load but reaches its limit at around
100 Mb/s. Figure 3(b) shows that the number of parallel down-
loads increases about linearly starting from a load of 90 Mb/s
and reaches several hundreds in case of heavy congestion.
The increased number of parallel downloads reduces download
rates which prolongs download times (see Figure 3(c)). Some
�ows even face socket timeouts due to excessive delay (see
Figure 3(d)). To give examples: imminent, moderate, and
heavy congestion lead to download times of 0.8 s, 16.4 s, and
24.6 s and to 0%, 1.1%, and 8.5% aborted downloads.

The average download time also contains the download time
of aborted �ows up to their abortion. Therefore, the request
rate� , the average download timeD, and the average number
of parallel downloadsX follow Little's law: � � D = X .


