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Abstract—With increasing network bandwidths, stateful fire-
walls are likely to become communication bottlenecks in net-
works. To mitigate this problem, we propose to bypass selected
traffic around firewalls using software-defined networking (SDN).
We discuss various approaches and elaborate the following
concept. A controller samples outgoing packets at the firewall
using sFlow to detect congestion. In case of congestion, flows
already admitted by the firewall are identified and offloaded
at an appropriate rate by installing flow-specific bypass rules
on an OpenFlow-capable switch. We suggest two different algo-
rithms to select appropriate flows and provide a proof-of-concept
implementation in a network testbed using the Ryu controller
framework. Experimental results illustrate the system behavior
at different load levels with and without offloading. We provide
an analytical system model to predict the offloading performance
for other system parameters than experimentally evaluated and
validate the model with our experimental results. A parameter
study suggests that the offloaded traffic rate may be a multiple
of the firewall’s capacity if the switch supports sufficient flow
rules or is able to match for TCP flags.

I. INTRODUCTION

Access ports with 1 Gb/s are becoming more and more com-

mon in business and campus Ethernet networks. To transport

the traffic generated by the endpoints, backbones and uplink

connections are upgraded to 10 Gb/s or higher bandwidths.

This upgrade comes with the need for new network hardware.

While Ethernet switches with 1 Gb/s and 10 Gb/s interfaces

are affordable, firewalls handling 10 Gb/s and more are expen-

sive. To benefit from increased network bandwidths without

replacing existing firewall hardware, we propose to bypass

some of the traffic around the firewall using software-defined

networking (SDN). This makes sense because firewalls can

handle many flows but are limited in transmission speed while

commodity OpenFlow switches support only a limited number

of flow rules in hardware, but operate at high bandwidth.

The approach also reduces the security level but only to

a moderate extent because most checks are performed by

firewalls during the setup of a flow and the bypasses are used

only for individual flows that have already been permitted by

the firewall.

The contribution of this work is a discussion of techniques

and prerequisites for firewall bypassing. We further concen-

trate on an approach where a controller samples outgoing

packets at the firewall to detect congestion. In case of con-

gestion, the controller identifies appropriate flows and offloads

them by installing flow-specific rules on a switch to bypass the

firewall. We suggest algorithms to detect the congestion on the

basis of sampled rates and to determine appropriate offloading

rates such that available flow rules are effectively leveraged. To

provide a proof-of-concept, we implement the proposed mech-

anism using OpenFlow and sFlow in a networking testbed.

Experimental results illustrate the system behavior at differ-

ent load levels with and without offloading. The offloading

performance in terms of offloadable traffic is limited in our

experimental setup but depends on hardware capabilities and

traffic patterns that may change in the future. We provide an

analytical system model to predict the offloading performance

for different system parameters and validate the model with

our experimental results. A parameter study suggests that

the offloaded traffic rate may be a multiple of the firewall’s

capacity if the switch supports sufficient flow rules or is able to

match for TCP flags. The suggested mechanism distinguishes

from other work as it can be integrated in legacy networks

that are not fully SDN-enabled. Another salient feature of

this approach is that signaling with the firewall is not needed,

i.e., the firewall is handled as a black box which makes the

approach independent of a specific firewall product.

This work is structured as follows. Section II provides an

overview of the technolgy used. Section III reviews related

work. In Section IV, we discuss various concepts for firewall

bypassing and Section V explains the algorithms used for

the approach explained above. Section VI reports a proof-of-

concept implementation and illustrates the system behavior

through experimental results. Section VII presents a theo-

retical performance analysis including numerical results and

Section VIII concludes this work.

II. TECHNOLOGICAL BACKGROUND

SDN separates the data plane and the control plane by

shifting intelligence from distributed forwarding nodes, i.e.,

routers or switches, to a logically centralized controller [1].

While non-SDN switches populate forwarding tables by learn-

ing addresses, an SDN controller installs a set of forwarding

rules on SDN switches either on initialization or during run-

time. Flow rules may be associated with a timer so that they are

automatically removed from the forwarding table of the switch

when they have not been used for the specified time. The

communication channel between SDN controllers and SDN

switches is called southbound interface. The Open Networking

Foundation (ONF) has standardized the OpenFlow [2] protocol

for that purpose. Our controller implementation is based on

the Ryu SDN framework [3] which supports all OpenFlow

versions from 1.0 up to 1.5 and sFlow.

978-3-901882-98-2 c© 2017 IFIP



sFlow [4] is a vendor-independent technology for monitor-

ing network traffic. Measurement data are sent by sFlow agents

in sFlow datagrams to sFlow collectors. The agent is part of

the switch while the collector can be part of a monitoring

system or, in our case, an SDN controller. We use the packet

flow sampling method of sFlow version 5 and the raw packet

header datagram format.

III. RELATED WORK

The authors of [5] propose traffic-aware flow offloading

(TFO) to offload heavy hitters from routers to specialized

forwarding hardware. A similar approach is CacheFlow [6]

which uses a high-speed SDN switch with limited hardware

flow tables like a cache for a slower software SDN switch

supporting a larger number of flow rules. This way, less

frequently used rules are offloaded to software switches. Both

approaches are aggregate-based, e.g., TFO works on the level

of BGP prefixes, which is not acceptable for our purpose as

flows should be permitted individually if they are accepted by

the firewall.

The authors of [7] use SDN to implement a reactive,

stateful firewall. SDN switches are configured to enforce

security policies using forwarding rules. The concept was

implemented with Ryu and tested using Mininet and Open

vSwitch (OVS). A similar concept [8] was implemented using

the POX controller and OVS. However, these approaches are

limited by controller performance and might not work with

hardware switches.

Network function virtualization (NFV) enables replacing

middlebox hardware like firewalls by software components

on virtual machines (VMs). VNGuard [9] is a framework for

efficient provisioning and management of NFV firewalls. The

framework allows for dynamic placement of NFV firewalls

inside a network via reconfiguration of the network topology

using SDN.

The authors of [10] present a combination of an NFV

firewall and an SDN-based firewall. A pure SDN firewall as

described in [7] monitors the state of a connection using an

SDN controller. Therefore, handshake packets are transmitted

to the controller causing additional delay because the control

channel is relatively slow. An NFV firewall is limited in

throughput by the fact that all processing is done in software.

The combined SDN/NFV firewall presented in [10] initially

forwards traffic via an NFV firewall which tracks the state

of all accepted connections. For very large connections, the

SDN-based strategy takes over without additional delay as the

handshake was carried out via the NFV firewall.

NFShunt [11] is an extension of the Science DMZ [12]

concept. The authors propose a bypass for a Linux-based

software firewall using SDN. NFShunt extends the firewall

rule set so that the bypassing rules can be specified in the

firewall configuration.

All the strategies described above require a network infras-

tructure which is completely based on SDN-capable switches,

but this is not the case in many current installations. Therefore,

their applicability is limited. We aim at relieving firewalls from

congestion in existing networks while only requiring minor

changes to the network infrastructure. While our work appears

similar to the one presented in [10], a major difference is that

we consider the firewall as a black box.

A patent held by Google [13] suggests to bypass every

flow that has been accepted by the firewall using SDN, i.e.,

the firewall serves mainly as decision engine. However, this

proposal ignores that switches have only a limited number

of flow rules and that traffic offloading in the absence of

congestion just reduces the security level. Our approach is

similar in the sense that it uses the firewall as decision engine,

but it strives to bypass largest flows only in the presence of

congestion for two reasons. First, this approach makes best use

of available flow rules on the switch. Second, it compromises

the security level only to avoid service degradation. For this

purpose we propose robust and effective measurement and

management algorithms.

IV. FIREWALL BYPASS

In this section we clarify some terminology, explain gen-

eral firewall usage, and propose static and dynamic firewall

bypassing for selected traffic.

A. Terminology and Usage

A flow describes a directed connection between two end-

points identified by the 5-tuple (src.-addr., dst.-addr., protocol,

src.-port, dst.-port). For connection-oriented transport pro-

tocols like TCP, a connection comprises a pair of flows,

each flow representing one direction. A firewall is a network

middlebox which applies rules and policies to decide whether

certain packets are permitted to pass. Stateless firewalls just

apply static filters to individual packets. In contrast, stateful

firewalls track connections and apply rules to packets in the

context of the connection they belong to.

Firewalls are commonly used to shield a layer-3 network

which is denoted as inside while the outside of the network

is denoted as outside. The objective is to protect the inside

against malicious traffic from outside and to prevent undesired

actions from inside to the outside. Normally, inside and outside

are connected by a router.

Two different operation modes exist for firewalls, transpar-

ent mode and routed mode. In transparent mode, a firewall acts

like a layer-2 bridge, i.e., it is invisible to layer-3 devices. In

routed mode, a firewall acts like a layer-3 router.

Firewall bypassing means that selected traffic is diverted

around the firewall to reduce its forwarding load, i.e., the

traffic is offloaded. It requires a network element on the path

that conditionally steers traffic around the firewall depending

on flow descriptors. We use the term bypass to describe a bi-

directional path between the inside and outside networks that

does not traverse the firewall. For the action of installing a

bypass for a pair of flows we use the term offloading. The

bypass is implemented using a switch connected to the inside

network, the firewall, and the outside network. In transparent

mode, the switch is connected to the outside network via

a router. As in routed mode the bypass does not only skip



the filtering part of the firewall, but also the router part, the

switch needs to implement parts of the router functionality,

such as rewriting MAC addresses. This makes the bypass

implementation more complicated. Therefore, we consider a

transparent firewall scenario in this paper.

B. Static Firewall Bypass

Static firewall bypassing means that some ranges of flow

descriptors are permitted a priori and are diverted around

the firewall. These ranges can be denoted as a whitelist and

configured in the access control lists of a managed switch. The

whitelisted traffic may directly be forwarded from inside to

outside and vice-versa while other traffic is first forwarded to

the firewall. This is illustrated in Figure 1(a). The solid green

line represents a trusted flow that can bypass the firewall by

whitelist entry while the flow represented by the dashed red

line goes through the firewall. Whitelisting is effective if a

large fraction of the traffic can be considered trusted a priori.

(a) A switch may bypass traffic defined by a static whitelist.

(b) A controller may learn via sFlow about congestion and offloadable flows
on the firewall and dynamically install bypassing rules on an SDN switch.

Fig. 1: Bypass options for transparent firewalls.

C. Dynamic Firewall Bypass

Dynamic firewall bypassing means that individual flows

may be offloaded after being permitted by the firewall. This

is acceptable as the most important checks are performed by

a firewall during the setup phase of a connection, afterwards

a connection is rather unlikely to be blocked by the firewall.

Therefore, we define a flow as offloadable if at least one packet

has passed the firewall after the setup phase.

A typical scenario is depicted in Figure 1(b). An SDN-

capable switch steers traffic through a transparent firewall

before leaving or entering the inside network. An SDN con-

troller installs per-flow bypassing rules on the switch so that

selected flows permitted by the firewall are forwarded directly

from inside to outside and vice-versa. A challenge is that

OpenFlow-capable switches support only a moderate number

of flow rules. Therefore, bypassing should be applied only

during periods of congestion and to largest possible flows.

To detect congestion and to learn about offloadable flows, we

use sFlow [4] to sample outgoing packets on specific ports

of the switch and export their headers to the SDN controller.

When the controller detects congestion and has identified an

offloadable flow, it can install forwarding entries at the switch

to bypass that flow. As flow rules are uni-directional, two

different flow rules are needed for inbound and outbound

traffic of a TCP connection.

A simple idea to deal with the shortage of flow rules on

OpenFlow-capable switches is to remove the bypass for a

specific flow when the flow becomes silent and to relocate

it to the firewall such that future packets of that flow are

again checked by the firewall. However, this does generally

not work in practice. If the state of an offloaded flow has timed

out on the firewall, the firewall drops packets after relocation.

If the state has not yet timed out, the firewall still drops the

packets for out-of-window TCP sequence numbers. Therefore,

relocation of previously offloaded flows back to the firewall is

not feasible.

V. ALGORITHMS FOR SDN-BASED FIREWALL BYPASSING

In this section we explain algorithms for SDN-based firewall

bypassing. The SDN controller learns about the load on

the firewall by traffic sampling using sFlow. Based on this

information, the controller decides when and which specific

rule should be installed on the switch to bypass a certain flow.

We offer a random and an intelligent strategy to select flows

for offloading.

A. Load Measurement

We use sFlow to export the headers of every nth
s packet

leaving the switch on a specific port to the controller. The

arrival time and size of the sampled packets serve as input for

rate measurement using TDRM-UTEMA for time-dependent

rate measurement [14], yielding an estimate of the current traf-

fic rate on the firewall. It may be expressed as sampled packet

rate r
p
F (packets/s) or as sampled byte rate rbF (bytes/s). We

set TDRM-UTEMA’s memory to MF = 5 s which essentially

determines the time scale of the measurement process. The

memory is chosen in the order of delay perceived for a packet

delivery during congestion including retransmissions.

B. Offloading Algorithm

The limited number of flow rules on the switch prohibits

the offloading of an arbitrary number of flows. The resulting

challenge is to decide when a certain flow should be offloaded.

We first determine the number of installable bypasses and

the time after which they may be reused. Then, we explain

under which conditions offloading is activated and derive an

appropriate offloading rate.

1) Offloading Requirements: Offloading of a TCP connec-

tion requires two flow rules on the switch: one to bypass

outbound traffic coming from inside and one to bypass in-

bound traffic coming from outside. Therefore, the number of

available rules on the switch nr allows for nby = nr

2 bypassed

connections.



2) Reuse Time of Flow Rules: We consider the time

treuse = trct + tout + taoh after which a flow rule is again

available on the controller for offloading another flow. Thereby

trct denotes the remaining completion time of the flow, i.e.,

the time from its offloading start until its last packet. If the

flow rule was unused for tout time, it is deinstalled from the

switch. That time is a configuration parameter. Finally, taoh
accounts for additional overhead that occurs, e.g., because flow

rules are deinstalled in batches.

3) Detection of (Imminent) Overload: We consider the

firewall as highly loaded when the utilization of the forwarding

capacity Cb
F (bytes/s) exceeds a configured high-load threshold

TH = 0.8. Furthermore, we use rbF > TH ·Cb
F as precondition

for offloading. The condition is checked whenever a new

sample is received. A time-averaged fraction of high-load

situations is tracked by a moving average and denoted as H .

The UTEMA method [14] is used for that purpose with a

memory of MH = 2 · treuse because the intent is to smooth

offloading over treuse time. Details of this smoothing are

explained in the next paragraph.

4) Target Offloading Rate: The scarcity of potential by-

passes limits the maximum average offloading rate to rreuseoff =
nby

treuse
over the reuse interval. Taking into account that traffic

is offloaded only for a fraction H of the time, the sustainable

offloading rate is rsusoff =
nby

H·treuse
. This rate can be very

large when imminent congestion is rarely observed so that

available bypasses can be quickly consumed. To avoid too

fast exhaustion, we require that the remaining bypasses nrem
by

suffice for a short smoothing time tssm, which leads to a

smoothed offloading rate rssm =
nrem
by

tssm
. Combining both

conditions leads to a target offloading rate of

roff = min
(

rsusoff , r
ssm
off

)

= min

(

nby

H · treuse
,
nrem
by

tssm

)

. (1)

C. Random Offloading (ROff)

Through packet sampling with sFlow, the controller knows

about flows traversing the firewall. To avoid offloading inactive

flows, the controller offloads a flow only when it receives a

sampled packet from it. Moreover, a TCP flow is offloaded

only if it is fully established, i.e., if the SYN flag of the

sampled packet is not set.

In the absence of (imminent) congestion, flows are generally

not offloaded. In the presence of (imminent) congestion, the

flow of a sampled packet is offloaded with a probability poff
that helps to meet the target offloading rate roff . This target

offloading probability is computed by poff =
roff

rp
F

.

As all sampled packets are treated equally, we call this

strategy random offloading (ROff). Nevertheless, long flows

are sampled with a higher probability than small flows, caus-

ing higher offloading probabilities for larger flows, which is

beneficial for offloading effectiveness.

D. Intelligent Offloading (IOff)

To improve the offloading effectiveness, we propose an

alternative offloading algorithm that selects longest possible

flows. We call it intelligent offloading (IOff). It pursues the

rationale that flows for which many sampled packets have been

received tend to be large and run longer than other flows.

With every sample arrival, the controller records flows from

which it received sampled packets in a flow list. A counter

cf indicates the number of sampled packets received for a

flow f . A flow is removed from the list if it is offloaded

or if no further sampled packet has been received from that

flow for longer than tmax
list = 2 s. In addition, the maximum

counter value cmax is determined with every sampled packet

and a moving average cavgmax over consecutive values of cmax is

tracked using UTEMA [14] with a memory of Mcntr = 0.5 s.

The memory is chosen to cover multiple packet samples on

the one hand and to quickly forget about past flows on the

other hand. Experiments have shown that results are rather

insensitive to the choice of Mcntr.

The following actions are performed only in the presence

of (imminent) congestion. The offloading probability poff
is computed and an accumulated offloading probability paccoff

is incremented by that value. The accumulated offloading

probability paccoff is zero at system start. If paccoff is positive

and the counter of the sampled flow is the largest in the

flow list, the flow is offloaded. Otherwise, the sampled flow

is offloaded with a modified offloading probability pmod
off =

paccoff · min
(

1,
( cf
cavg
max

)k
)

with k = 3. We tested other values

of k without significant difference. When a flow is offloaded,

the accumulated offloading probability is decremented by 1.

VI. PROOF-OF-CONCEPT IMPLEMENTATION AND

EXPERIMENTAL RESULTS

In this section, we demonstrate the feasibility of the pro-

posed approach with a proof-of-concept (PoC) implementa-

tion. We report encountered challenges and provide experi-

mental results.

A. Proof-of-Concept Implementation

For our PoC implementation we use the networking testbed

illustrated in Figure 2. It comprises an OpenFlow-capable

switch, a transparent firewall, a traffic source, a traffic sink,

and an OpenFlow controller.

An inside host is interconnected via a switch and a router

with an outside network. The default configuration of the

switch diverts all traffic leaving or entering the inside network

through the firewall before forwarding it to the router or

the inside host. A controller host is connected to the switch

and controls the forwarding tables of the switch using the

OpenFlow protocol.

KVM [15] and libvirt [16] are used for virtualization.

The VMs for the controller, the inside host, and the outside

host each have a dedicated physical network interface card

(NIC) using PCI pass-through. The router VM uses two

physical NICs. Each VM is assigned 1 GB RAM and two CPU

cores. We use an HP ProCurve 5412zl with v2 modules as

OpenFlow-capable switch and a Cisco ASA 5550 as a stateful

firewall.

The physical machine and the VMs use the Ubuntu [17]

Linux distribution as operating system. The controller runs an



Fig. 2: The PoC implementation uses a commodity PC, an OpenFlow-capable
switch, and a hardware firewall. An inside and outside VM are connected
through a router with an OpenFlow switch and a transparent firewall in
between that may be bypassed through a controller application.

own application based on Ryu [3] written in Python. It imple-

ments both random and intelligent offloading as described in

Section V and is connected to the controller port of the switch.

The inside host runs an HTTP client and the outside host runs

an instance of the nginx [18] web server. The HTTP client is

also written in Python. It requests files from the web server

according to a Poisson process using appropriate parameters.

In the experiments, downloads are performed in parallel if they

cannot be fully served before the client requests new files from

the server.

B. Experience of Technical Limitations

During experimentation, we faced several technical limita-

tions of the PoC setup. Many of them are due to the usage

of available hardware or our testbed setup, some others are of

general nature and exclude more advanced bypass solutions.

Through experimentation we learned that at most 2042

layer-4 flow rules can be installed in hardware tables on the

switch limiting the number of bypasses to 1021. However,

some OpenFlow-capable switches can support up to 20000

flow rules [19]. This is still a rather low value and due to

the hybrid switch design. Software-based OpenFlow switches

can support significantly more flow rules with the drawback

of lower forwarding performance.

According to the manual, ns for sFlow sampling may be

as small as 50. However, we conducted preliminary tests that

showed significant inaccuracies on our testbed. At a port speed

of 100 Mb/s, sFlow can adhere to its configured sampling rate

only for ns ≥ 147. To add a safety margin, we chose ns = 200
for the experiments.

We need to sample packets leaving the firewall, but sFlow

can only sample outgoing packets on a switch port. Therefore,

in our PoC implementation traffic from the firewall is fed

to another switch port for sampling purposes before being

forwarded to its actual destination (see Figure 2).

A firewall keeps per-flow states. They are removed either at

flow termination, which is detected through TCP flags (FIN,

RST), or through timeouts that are usually set to 3600 s. Open-

Flow can also match for TCP flags. However, this feature is

not available prior to Version 1.5, and, therefore, not supported

by most switches. We use Version 1.3 in our experiments.

Therefore, offloading rules on the switch should be configured

with a timeout value of tout = 3600 s to avoid that flows on

the switch are blocked before they would be blocked on the

firewall. As a result, the major fraction of rules installed on the

switch belong to terminated flows and wait for a timeout. This

is a rather inefficient usage of scarce forwarding resources. We

set tout to a smaller value of 300 s in our experiments to allow

short runs of 60 minutes.

Some firewalls, e.g., Cisco ASA, implement source port

randomization. If this feature is enabled, the firewall replaces

the TCP source port for outgoing packets of a flow and

performs the reverse operation for the TCP destination port of

incoming packets. If a flow is offloaded from the firewall, the

modification is no longer performed. Then, endpoints cannot

match the packets of the established flow and drop them.

Therefore, source port randomization must be disabled to

facilitate offloading. A similar feature exists for initial TCP

sequence numbers, which must also be disabled.

C. Parametrization of Experiments

For experimentation, we apply the parameters in Table I.

We limit the throughput of the firewall to Cb
F = 100Mb/s by

connecting its inside port via a 100 Mb/s link to the switch.

For load measurement, sFlow is configured to sample every

nth
s = 200 packet forwarded from the firewall to the inside

VM. The traffic rate on the firewall is computed with TDRM-

UTEMA and a memory of MF = 1 s.

TABLE I: Parametrization of the PoC implementation for experimentation.

Cb
F

= 100Mb/s ns = 200 MF = 1 s tssm = 10 s
nr = 2000 nby = nr

2
tout = 300 s treuse = tout

TH = 0.8 MH = 2 · tout Mcntr = 0.5 s k = 3
E[B] = 1000 kB cvar[B] = 3 λ variable Bmin = 10 kB

We use nr = 2000 flow rules so that at most nby = 1000
TCP connections can be offloaded. We work with an inactivity

timeout of tout = 300 s for installed rules on the switch. This

is the dominating component of the reuse time so that we

set the reuse time to the same value. We define the high-

load threshold to be TH = 0.8 and use a memory of twice

the reuse time to compute the time-averaged fraction of high-

load with UTEMA. For intelligent offloading, the maximum

counter is tracked using UTEMA and a memory of Mcntr =
0.5 s, and the exponent k = 3 is used for the computation

of modified offloading probabilities. Additional experiments

showed that the choice of Mcntr and k has only little influence

on performance results.

We model file sizes according to a random variable B =
Bmin + BH2

which is composed of a constant component

Bmin and a random component BH2
that follows a hyper-



(a) Measured IP traffic rate on the firewall.

(b) Number of parallel downloads.

(c) Average download time per flow.

(d) Fraction of aborted downloads.

Fig. 3: Impact of load and offloading strategy on system performance.

exponential distribution. This yields the following complemen-

tary distribution function:

P (B < x) =











1 x ≤ Bmin

p0 · e
−µ0·(x−Bmin)+ x > Bmin

p1 · e
−µ1·(x−Bmin).

(2)

We choose an expectation of E[B] = 1000 kB, a minimum

file size Bmin = 10 kB, and a coefficient of variation of

cvar(B) = 3 to model a few very large flows and many small

ones because flow lengths usually exhibit high variance [20].

The largest flows have about 100 MB. We further determine

the other parameters p0/1 and µ0/1 such that p0

p1

= µ0

µ1

is

met. The same sets of files and also the same order is used

for download in any experiment (different parameters) if not

mentioned differently. Different seeds are used for several runs

per experiment.

D. Experimental Results

The offloading algorithms are designed to bypass flows

only in case of (imminent) overload. Therefore, the observed

performance results depend on the traffic load. We define the

load by ρ = λ · E[B] whereby λ is the request rate of the

HTTP client. To control the load, we vary the flow arrival rate

value between 1
110ms

and 1
40ms

. We first visualize the effect

of congestion without offloading. We analyze the operation of

offloading algorithms for imminent and moderate congestion.

Then, we demonstrate the effect of random and intelligent

offloading depending on the load.

(a) Measured IP traffic rate on the firewall.

(b) Target offloading rate.

(c) Available bypasses.

Fig. 4: Illustration of system behavior for imminent congestion (ρ =
1000 kB
100ms

= 81.92Mb/s).

1) The Effect of Congestion: We conducted experiments

over 60 min each. We performed 10 runs for every experiment

with different seed and we provide average values in Figures 3

and 6. In the following, we refer to load levels of around

80 Mb/s, 100 Mb, and 135 Mb/s as imminent, moderate, and

heavy congestion. The lines for “w/o offloading” in Fig-

ures 3(a)–3(d) illustrate the effect of congestion depending

on different load. Figure 3(a) shows that the traffic rate on

the firewall increases with load but reaches its limit at around

100 Mb/s. Figure 3(b) shows that the number of parallel down-

loads increases about linearly starting from a load of 90 Mb/s

and reaches several hundreds in case of heavy congestion.

The increased number of parallel downloads reduces download

rates which prolongs download times (see Figure 3(c)). Some

flows even face socket timeouts due to excessive delay (see

Figure 3(d)). To give examples: imminent, moderate, and

heavy congestion lead to download times of 0.8 s, 16.4 s, and

24.6 s and to 0%, 1.1%, and 8.5% aborted downloads.

The average download time also contains the download time

of aborted flows up to their abortion. Therefore, the request

rate λ, the average download time D, and the average number

of parallel downloads X follow Little’s law: λ ·D = X .



(a) Measured IP traffic rate on the firewall.

(b) Target offloading rate.

(c) Available bypasses.

Fig. 5: Illustration of system behavior for moderate congestion (ρ =
1000 kB
80ms

=102.4 Mb/s).

2) Illustration of Random Offloading: We illustrate the

operation of random offloading during a single run, first

with imminent and then with moderate congestion. Intelligent

offloading produces similar results (not shown).

Figure 4(a) shows that with imminent congestion, the mea-

sured rate rbF on the firewall is mostly below the dashed

high-load threshold TH (converted to a rate). As a result,

the offloading rates in Figure 4(b) are rather large so that

multiple flows can be quickly offloaded in case of congestion.

The system mostly disposes of around 625 free bypasses (see

Figure 4(c)).

With moderate congestion, the measured rate rbF on the

firewall in Figure 5(a) is mostly above the dashed high-

load threshold TH . Therefore, the offloading rate is clearly

lower than with imminent congestion (see Figure 5(b)). Mostly

around 500 bypasses are unused (see Figure 5(c)).

3) Effects of Offloading: Figure 3(a) shows that the mea-

sured rate on the firewall increases with the load, but more

slowly with offloading whereby the difference between random

and intelligent offloading (ROff, IOff) is small. The number

of parallel connections increases significantly w/o offloading,

with offloading the increase happens only at significantly

higher load (see Figure 3(b)). The same holds for download

times and aborted downloads in Figures 3(c) and 3(d).

We now concentrate on the difference between random

and intelligent offloading. As shown in Figure 6(a), random

offloading has mostly fewer free bypasses available than

intelligent offloading. Nevertheless, intelligent offloading by-

passes more traffic because larger flows are offloaded (see

Figure 6(b)). The offloaded traffic rate increases with offered

load, but Figure 6(c) shows that the percentage of offloaded

traffic is bound by about 44% for random offloading and by

about 48% for intelligent offloading.

(a) Available bypasses.

(b) Offloaded traffic rate.

(c) Percentage of offloaded traffic.

Fig. 6: Impact of random and intelligent offloading.

VII. ANALYTICAL PERFORMANCE EVALUATION

In this section we model firewall bypassing by analytical

means and use results from this model to provide performance

predictions about systems with more flow rules, higher firewall

capacities, different traffic models, and timeouts.

A. Model

The offloading mechanism can bypass nby connections

within the reuse time of the flow rules treuse. We further

assume that the controller randomly samples the traffic carried

on the firewall and uses the samples for offloading decisions.

We approximate the traffic volume carried by the firewall

within treuse time by treuse · λ · E[B]. As any packet is

sampled with equal probability, arriving traffic of a flow is

sampled and then offloaded with a rate of α =
nby

treuse·λ·E[B] .

The particular about that rate is that it relates to traffic volume

instead of time. Thus, the downloaded traffic volume A until

a flow is offloaded is exponentially distributed according to

P (A ≤ x) = 1 − e−α·x. With P (B < x) being the

complementary distribution function of the file size, we can

compute the probability that a flow is longer than x (bytes)

and not yet offloaded by

P (Bnot
off > x) = P (B > x) · P (A > x). (3)



The expectation of that value can be calculated by

E[Bnot
off ] =

∫

∞

0

P (Bnot
off > x)dx. (4)

Combining Equations (2) – (4) yields

E[Bnot
off ] =

∫

∞

0

P (B > x) · e−αxdx

=

∫ Bmin

0

1 · e−α·xdx

+

∫

∞

Bmin

(p0 · e
−µ0·(x−Bmin)

+ p1 · e
−µ1·(x−Bmin)) · e−αxdx

=
1− e−α·Bmin

α
+
p0 · e

−α·Bmin

α+ µ0
+
p1 · e

−α·Bmin

α+ µ1
(5)

We use the fraction of offloadable traffic ω = 1−
E[Bnot

off ]

E[B] as

measure for offloading effectiveness.

B. Performance Results

To simplify the analysis, we define the bypass density

dby =
nby

λ·E[B] given as a multiple of 1
Mb/s . It is the number

of available bypasses divided by the offered traffic rate which

reflects the load. In the following, we validate the proposed

analysis and investigate the offloading effectiveness under

various conditions.

1) Validation of the Analytical Model: For the parameters

of our experiment, dby = 1000
100Mb/s

= 10 1
Mb/s

, treuse = 300 s,

E[B] = 1Mbyte, and cvar(B) = 3 we achieve an offloading

effectiveness of 41.75% which is very close to the experimen-

tal results of about 41% in Figure 6(c).

2) Impact of System Parameters: Figure 7(a) illustrates

that the offloading effectiveness increases with increasing

bypass density dby and decreases with increasing reuse time

treuse ∈ {300, 600, 3600} s. When treuse = 600 s is used, a

bypass density of dby = 35 connections per Mb/s is needed to

offload 50% of the traffic. That means, 14000 (140000) flow

rules are needed to offload 50% from a 200 Mb/s (2 Gb/s)

traffic aggregate so that it can be served by a firewall with

a capacity of 100 Mb/s (1 Gb/s). Using a larger reuse time

treuse = 3600 s (standard value for timeouts on firewalls)

significantly reduces the offloading effectiveness. If flow rules

can be removed faster by matching TCP flags, a lower treuse
is obtained in spite of a large timeout value which leads to

increased offloading effectiveness.

3) Impact of the Traffic Model: We now keep the bypass

density constant at dby = 10 1
Mb/s

and vary the mean E[B]
and coefficient of variation cvar(B) of the flow size. Fig-

ure 7(b) shows that offloading effectiveness clearly increases

with increasing flow size E[B]. This is because offloaded

flows have more remaining data to transmit when flows are

larger. The effectiveness also increases with increasing flow

size variability because this increases the size of long flows

which have a larger likelihood to be offloaded.

(a) Impact of bypass density dby and reuse time treuse for E[B] = 1MB
and cvar = 3.

(b) Impact of mean E[B] and coefficient of variation cvar(B) of the flow

size for a bypass density dby = 10 1

Mb/s
and treuse = 300 s.

Fig. 7: Analytic results for offloading effectiveness (percentage of offloadable
traffic).

VIII. CONCLUSION

We have proposed static and dynamic firewall bypassing

using an OpenFlow-capable switch. We presented detailed

algorithms for dynamic firewall bypassing as well as a pro-

totype implementation. The OpenFlow controller learns about

congestion on the firewall using sFlow and installs appropriate

bypassing rules on the OpenFlow-capable switch in case of

(imminent) congestion. As flow rules are limited, we devel-

oped algorithms to make efficient use of them over time taking

the congestion level into account. Experimental results demon-

strated the feasibility of the suggested approach and illustrated

the operation and performance of the mechanisms. We pro-

posed an intelligent offloading strategy which is more efficient

than random offloading. We derived an analytic performance

evaluation model and validated its accuracy with experimental

data. Analytic results showed that a large percentage of the

overall traffic can be offloaded from the firewall. However,

this requires a large number of flow rules and/or short reuse

times of flow rules. The performance also benefits from a large

mean and a large variance of flow sizes.
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