Buffer dynamic management for energy-aware network

Wael Zouaoui
CNRS, LAAS,
7, avenue du Colonel Roche
F- 31400 Toulouse France
Univ de Toulouse, UPS, LAAS,
F- 31400 Toulouse France
wzouaoui@laas.fr

Yann Labit
CNRS, LAAS,
7, avenue du Colonel Roche
F- 31400 Toulouse France
Univ de Toulouse, UPS, LAAS,
F- 31400 Toulouse France
ylabit@laas.fr

Carolina Albea
CNRS, LAAS,
7, avenue du Colonel Roche
F- 31400 Toulouse France
Univ de Toulouse, UPS, LAAS,
F- 31400 Toulouse France
calbea@laas.fr

Abstract—Energy is a major issue in networks especially in local network implementation. Some technological solutions have been developed to treat this problem e.g. Re-engineering, Dynamic Adaptation, Smart Sleeping. We present an original and alternative adaptive solution from a proposed extended Adaptive Link Rate (ALR) module, which relates energy and router queue-length. Applying a controller already proposed by authors, the router queue-length is adapted in order to follow a reference given by the extended ALR module, that guarantees an energy reduction. The approach is validated in the network simulator "NS-2". Within ADREAM building at LAAS-CNRS, this "control green" will allow to improve energy consumption regarding traffic load and available energy in communication networks.

Keywords—Green Network, Adaptive system, Quality of Service, Energy, ADREAM, Adaptive Link Rate.

INTRODUCTION

Since few years, the number of communication system users has significantly increased, thereby energy consumption have also increased. According to [1], the number of Internet users reached 2.4 billion people in 2012. Consequently, the energy consumption in communication networks represents 5.5% of annual world electricity production and a rate of 2% of carbon dioxide emissions (CO₂). The perspective for 2015, with probably 2.8 billion of Internet users, is to achieve a traffic 4 times larger and to double energy consumption (approximately 25% larger per year) [2]. This issue requires to research new ways to reduce energy consumption.

In wired networks, energy reduction often diminishes Quality of Service (QoS). This performance, energy reduction trade-off requires to define an efficient strategy to decrease the network energy consumption, what is a real challenge.

Some interesting hardware and protocol solutions have been proposed to reduce energy consumption in communication networks. In [3], the author’s survey mention some techniques which aim is to improve energy efficiency of computing and network resources. They classify these methods as follows:

a) Re-Engineering: This approach aims at modifying and re-engineering network architectures to use more energy-efficient elements (green routers, switches ...). This solution is complex and expensive due to fundamental changes in network [4], [5], [6], [7].

b) Dynamic Adaptation: This solution modulates network resources capacities based on varying traffic loads and service requirements. “Performance Scaling” and “Idle Logic” use this approach with the goal of reducing energy consumption in network [8], [9], [10], [11].

c) Smart Sleeping: Energy consumption is reduced by switching off some network equipment when they are inactive, and to smartly wake them up only if necessary. There are two kinds of smart sleeping: “on/off and sleeping technology”, to switch off the inactive or idle network components [12], [13]; and “proxying technology” that uses a proxy to answer to non-urgent messages instead of employing a node, which is waked-up when required [14], [15].

In the industry domain, some important companies in the sector have already started a “green revolution” (development of “green” network equipments). Among these companies, we cite the following ones: Cisco (EnergyWise) that focuses on reducing power utilization of all devices connected to a network [16]; Alcatel-Lucent (GreenTouch) based on all-optical networking systems with the goal to master the technology for future green networks [17]; IBM (Big-Green), which goal is to reduce data centers’ energy consumption [18]; ICT4EE (Information and Communication Technologies for Energy Efficiency) forum (GeSI, DigitalEurope, JBCE and Europe TechAmerica), whose objective is the enhancement of energy efficiency in ICT systems [19]; NetGear that offers a wide range of innovative routers and energy-aware switches [20] and Hewlett-Packard, Intel, Microsoft, Phoenix Technologies, Toshiba (Advanced Configuration and Power Interface) that provides an open standard for device configuration and power management by the Operating System [21].

In this paper, an extended ALR module is proposed to show the existing relationship between energy and router queue-length. Then, we apply a control algorithm developed by us [22] to a router. This control adapts the traffic that crosses a node by using length-queue where packets are temporarily stored. The adapted length-queue converges to the sub-optimal reference given by ALR module, which guarantees an energy reduction. The choice of the selected nodes is a problem in itself, and it is not the focus of this work. The proposed solution is validated in NS-2 [23] and exploited in ADREAM (Architectures for Dynamic Resilient Embedded Systems) building at LAAS-CNRS.
Autonomous and Mobile systems) project (building devoted to
cyber-physical systems at LAAS-CNRS, figure 1). We consider
two functioning modes (figure 2):
- Normal mode: During a daytime, the system administrator
ensures the proper functioning of the communication system,
the introduction of new materials, computer security and
daily network administration. With no software or hardware
anomaly, the administrator faces a normal operating mode.
- The energy aware mode: to make an intelligent management
computer system (from an energy point of view), the adminis-
trator programs the energy aware mode for a sensible time
interval (night) and/or in cooperation with users (e.g. time
slot 12H-14H). This mode of operation is a degraded mode
(e.g. trade off between energy saving and quality of service
parameters such as transmission delay information).
Likewise, energy consumption measures are given by

Fig. 1. ADREAM building at LAAS-CNRS.

![NORMAL MODE](image)

![ENERGY AWARE MODE](image)

![Degraded mode](image)

Fig. 2. The two modes (normal and degraded).

I. ALR MODEL AND ECOFEN MODULE

Firstly, lets model the energy consumption of the network
equipment. For this purpose, we consider a router model
designed in NS-2. NS-2 is currently one of the most widely
used simulators in the network community [23]. This simulator
allows us to simulate large networks with realistic traffic and
to obtain QoS measures.

The ECOFEN module (Energy Consumption Model for
End-to-end Networks) was developed in NS-2. This mod-
ule provides the instantaneous energy consumption of each
equipment taking into account the traffic and the type of
employed equipment (router, switch, network card, etc.) [24].
This module is based on the ALR model (Adaptive Link Rate)
which adapts transmission rates depending on link use-rate.

![ALR model and ECOFEN module](image)

Fig. 3. Modified ALR model of power consumption in a network element
(router model).

Power (Watts)

<table>
<thead>
<tr>
<th>Capacity (MB/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>W_{max} = 0</td>
</tr>
<tr>
<td>P_{max} = b q_{ref}</td>
</tr>
</tbody>
</table>

q_{ref} depends on two key parameters:
- the update time-window for the queue length reference.

\[
T_{q_{ref}} = \frac{T_{w}}{\beta},
\]

where T_{w} is the time-window related to the node input traffic. β is the number of changes of the value of q_{ref} during the period T_{w}. This allows to update more or less frequently q_{ref}.
depending on the traffic variability.

- The queue length reference
 \[q_{ref} = \frac{\hat{w}_n}{\gamma} \tag{3} \]
 where \(\hat{w}_n \) is the average input traffic on a fixed time-window \(T_w \). \(\gamma \) is a step (weighting coefficient) for adapting the amplitude of the reference function \(w_n \).

Remark. The judicious choice of the average input traffic \(\hat{w}_n \), on a fixed time window \(T_w \), take into account the high variability of this traffic.

II. Analytic & Simulation Results

The proposed control law in discrete-time is:
\[u_k = \text{sat}^C\{u_{k-1} + Kx_k\}, \tag{4} \]
where \(K = [K_1 \quad K_2] \) are control gains computed following the mechanism proposed in [22]. \(x_k = [e_k \quad e_{k-1}]^T \), where \(e_k \) is the error between queue-length reference and queue-length in time-period \(k \). The high-bound saturation \(C \) depends on network capacity. We choose: \(C = 25000\text{pkts/s}, T_s = 0.05s \). From [22], it comes that: \(K_1 = -21 \) and \(K_2 = 20 \). To validate this approach, we take a simple topology composed of two nodes and one source, as shown in Figure 4. In Figure 4, we show the traffic rate crossing a switch located in the ADREAM building of LAAS-CNRS in the daytime. Several simulations with different values of \(\beta \) and \(\gamma \) are done to select the best couple that gives the maximum of power gain \((G_W) \) and maximum ratio of time that power gain is minimized \((T_{GW}) \). Taking 21 values for \(\gamma \) from 500 to 1500 with a pitch of 50. For each value of \(\gamma \), we assign 8 values for the update window \(\beta \in [1, 8] \). In Figure 5, we present the power gain and the ratio of time when we have power gain for different values of \(\beta \) function of \(\gamma \). It is clearly seen the influence of theses parameters on energy consumption. The best value of \(G_W \) and \(T_{GW} \) are achieved with the couple \((\beta, \gamma) = (8, 850) \).

![Fig. 4. ADREAM switch traffic](image)

After choosing the couple \((\beta, \gamma) \), some analog simulations of the node 4 are performed here. In Figure 6, the evolution of the input traffic similar to the traffic rate in Figure 4 and the output traffic calculated from the control law are presented. Likewise, it is shown in Figure 7, the queue length evolution. Note that the network traffic is unsaturated, so losses are avoided. Figure 8 (up) shows the power consumption with and without control law. Note, there is a significant improvement in power consumption from \(9 : 30h \) to \(11 : 30h \) and from \(14 : 30h \) to \(18 : 30h \) which represents \(60\% \) of the total simulation time \((20h) \). During this time period, packets are stored in the queue (with size \(q_{ref} \)), the output traffic is smaller than the input traffic. Moreover, power is smaller than a power threshold, hence the reduction of the energy consumption. Given the ALR model, if the output traffic is smaller than a threshold \(W_t \) (see Figure 3), the consumed energy will be smaller than without control. On the other hand, for the others periods of time, queue length releases packets already stored. Hence, the output traffic is larger than the input traffic, what leads to a slight energy overconsumption, the difference is less than the reduction.

Note that the minimum power consumption of the ALR model is \(P_0 = 155W \) (Figure 8). This value is obtained when there is not traffic crossing the controlled node (\(w_n = 0\text{Mb/s} \)). This is a minimum power consumption of the operational node without traffic.

In Figure 8 (bottom), the two phases of energy consumption (reduced and increased energy consumption) are easily seen. In this simulation, it is shown that the global energy consumption for a time period of \(20h \) is reduced \(16.49\% \) (energy gain) in the ALR model. The ratio between reduced and increased energy consumption is up to \(60\% \).

![Fig. 5. Power gains (up) and Time power gain (bottom) with different values of \(\beta \) and \(\gamma \)](image)

![Fig. 6. Input (red) and output (blue) traffic](image)
Fig. 7. Queue length evolution (blue) and queue length reference (red).

Fig. 8. Power consumption (up) with (blue) and without (red) flow control, on ALR model of a network node - Power gain (Bottom)).

III. CONCLUSION

In this article, an alternative adaptive solution for reducing energy consumption in networks has been presented. This solution is developed from a proposed ALR that relates router energy and queue-length. By using a control protocol developed by us, we achieve to adapt the router queue-length in such a way that it converges to the reference given by the extended ALR model, and thus, energy is reduced. Simulations in and NS-2 validate our algorithm. The shown energy gain let to call our algorithm “control green”.

REFERENCES

