Operator Placement with QoS Constraints for Distributed Stream Processing

Yuanqiang Huang, Zhongzhi Luan, Rong He, Depei Qian
Sino-German Joint Software Institute, Beijing Key Laboratory of Computer Network
Beihang University
Beijing, China
yuanqiang.huang@jsi.buaa.edu.cn

Abstract—Distributed stream processing relies on in-network operator placement to achieve an optimal resource allocation which can use the pool of machines and network resource efficiently. Due to the QoS (Quality of Service) constraints imposed by the application, operator placement is usually treated as an optimization problem with constraints. Trying to get a global optimization is challenging since it’s a NP-hard problem. In this paper, we formalize the operator placement problem with network usage as the optimization objective and use two resource allocation related QoS metrics: throughput and end-to-end delay. We propose a concept of Optimization Power to describe the host’s capacity to reach a global optimal solution as soon as possible. We also propose a corresponding Optimization Power-based heuristic algorithm for operator placement. Experiment results show that our approach can achieve a better performance in terms of reducing network usage and end-top-end delay, improving success ratio, and decreasing resource discovery frequency, compared to some other placement algorithms.

Keywords—distributed stream processing; resource allocation; operator placement; QoS; constraint; optimization

1. INTRODUCTION

Many applications require on-line analysis of large amounts of data that are being updated continuously. Such applications include sensor-based query network, financial analysis, network traffic monitoring, and so on. Some of them are called stream-processing applications, into which data tuples are pushed continuously. Complex stream-processing applications are often composed of many independent operators. Each operator has a specific functionality. Once an operator completes processing of the input, outcome may be generated, which may be related to some other operators. Operators are needed to be instantiated so that the application can be actually deployed and running. Instantiating an operator means to distribute the functionality of the operator to some physical computer, that is, a node. In practice, finding out a strong enough node to host the whole application is infeasible due to the fact that the node must meet the resource constraints of all operators and satisfy application’s Quality of Service (QoS) requirements such as throughput and end-to-end delay of the data tuples. Because of the loose coupling among the operators, operators can be placed on different nodes of a network. In other words, stream-processing applications could be executed in the in-network way.

Suppose resources of the system are determinate, what we should do is to find out appropriate physical hosts in the system for operators to make the application run properly. Such a problem is called operator placement. In fact, operator placement is constrained by some factors. Firstly we must guarantee application’s functional goal is reached. It means that the load introduced by the operator should not exceed the maximal capacity of the host. In other words, the total resources that a host could offer should be greater than the total resource consumption of all operators running on it, otherwise the host will be overloaded, which make application work abnormally; The performance goal of the application is also very crucial. We usually use Service Level Objectives (SLOs) to denote specific performance need to achieve. So the set of hosts for an application’s operators should jointly provide adequate capability to meet application’s SLOs. For example, network delay between hosts may have a great influence on the final end-to-end delay from the upstream operator to the downstream operator, which may cause end-to-end delay violation when the hosts are connected by a long distance link. So the network distance among operators’ hosts is also an important factor need to consider. What is more, resource costs are also an important factor since hosts and network resources are not for free in most cases. It is valuable that the application pay a minimal cost to achieve predefined functional and performance goals. It is obvious that operator placement is actually an optimization under constraints, which tries to find an optimal mapping from operators to hosts to satisfy the functional and performance goals while minimizing the cost for using resources.

This paper explores the operator placement problem in distributed stream processing. First, we formalize the operator placement as a constrained optimization problem, in which two QoS metrics: throughput and end-to-end delay, are transformed into constraints, and network usage is used for optimization objective. Some other operator placement algorithms have been proposed to solve the optimization problem with end-to-end delay as the constraint. They considered only the network delay along the path, but ignored processing delay on the hosts. We consider that the end-to-end delay consists of not only network delay but also processing delay, and take that fact into consideration when performing operator placement. To achieve this, we propose a concept of Optimization Power which describes the ability of the node to reduce network usage while
satisfying the QoS constraints. We prove by experiments that in most cases the bigger the Optimization Power of a node is, the smaller network usage and end-to-end delay. Finally, we present a heuristic algorithm, based on node’s optimization power for operator placement. Our experiments show that compared with other operator-placement algorithms, our algorithm achieves the best performance.

II. APPLICATION MODEL

Let \(O = \{o_1, o_2, ..., o_n\} \) represent the operator set of a stream processing application. As mentioned before, an operator performs a stream processing task which continuously executes over input stream of data tuples and generates new output stream. An operator may have multiple input streams \(\{i_s\} \) and produce multiple output streams \(\{o_s\} \). The operators which generate output stream without receiving any input stream are called sources. While those which receive input streams but do not generate output are called sinks. The others are intermediate operators. Figure 1 shows a typical stream processing application in financial analysis. The financial data streams are continuously generated in real-time from the processing application in financial analysis. The financial data are metrics such as end-to-end delay, data lost ratio of data, performance goals of application which usually include QoS meta-data has been provided. SLOs, which generate output stream without receiving any input stream \(\{o_s\} \), execute over input stream of data tuples and generates new output. The operators \(o \) performs a stream processing task which continuously transfers between different hosts in the network. Besides the allocated on the same host, outputs of the upstream operator must be enough available resources on host to meet the specific rate requirement. Besides, host resource capacity also has the influence on application’s end-to-end delay since it determines the processing delays of operators running on the host. Let \(r_{cpu}^j \) denotes residual CPU capacity on node \(n_j \), which is the max available CPU cycles in unit of time; \(e_{cpu}^j \) denotes the average CPU cycles needed by \(o_i \) to process a data tuple. Based on the approach in [2], expected time needed by an operator \(o_i \) to process a tuple on node \(n_j \) can be estimated:

\[v_{ij} = \frac{e_{cpu}^j - e_{cpu}^j}{r_{cpu}^j - r_{cpu}^j} \]

Taking all the factors above into consideration, we introduce an attribution named Optimization Power \(OP \) to measure the appropriateness of node \(n_i \) for hosting operator \(o \), which can be calculated by the following empirical formulas:

\[OP_{pi} = \left(\frac{\max_{n_j} \left(\frac{e_{cpu}^j}{r_{cpu}^j} \right) \cdot \left(g_{max} - d_i \cdot n_j - \max_{n_j} \left(\Phi(o) \cdot n_j \right) \right) \right) \]

\[\sum_{n_j} \left(\Phi(o) \right) = \sum_{n_j} \left(\Phi(o) \cdot n_j \right) + \sum_{n_j} \left(\Phi(o) \cdot n_j \right) \]

Here SUM\(\Phi(o) \cdot n_j \) and MAX\(\Phi(o) \cdot n_j \) capture the increased network usage and maximal network delay respectively when choosing \(n_j \) to host \(o \). \(b^o \) is the bandwidth requirement for delivering data streams from \(n_j \) to its downstream \(o \), \(D_{i}(o) \) and \(U_{i}(o) \) denote all the downstreams and upstreams of \(o \) respectively, and \(d_i \cdot \Phi(o) \cdot n_j \) denotes the expected time for transferring a byte from \(\Phi(o) \cdot n_j \) to \(n_i \) in which \(\Phi(o) \) represents the node hosting operator \(o \). Intuitively, the optimization power of a node for hosting an operator is considered higher if it has more residual CPU capacity which means the processing delay of the operator on this node will be smaller. And also \(OP \) is considered higher if the increased network usage or maximal network delay is smaller, which means the final network usage or end-to-end delay will become smaller. In addition, we consider give a node higher
when it produces smaller processing delay and network delay. Therefore higher OP will lead to smaller network usage and smaller end-to-end delay, and it actually describes the ability of a node to reduce application’s overall network usage and end-to-end delay when it hosts application’s operator. Node with negative OP value will be considered ineligible since the introduced delay is greater than maximal delay allowed \(q_d^{\text{max}}\). We have executed several experiments and observe that OP’s estimation is rather accurate in most cases.

B. Algorithm

Now we present an Optimization Power-based (OPB) operator placement algorithm. In general, our algorithm iteratively search hosts for hosting operators in order to find a locally optimal mapping between operators and hosts, which can lead to a minimal network usage and satisfy QoS constraints. The algorithm can also be triggered during runtime of application when actually generated network usage or QoS can’t meet the specified requirements. To find appropriate hosts in a large node space, our algorithm relies on Resource Discovery Service (RDS) \([5]\) to discover potential hosts that can satisfy resource requirements for processing operators. Network Coordinate Service (NCS) \([6]\) is employed to estimate network delay between any pair of nodes using Euclidean Distance between their given network coordinates. In our case, node’s information including residual resource state and network coordinate are acquired by means of RDS, and the information is used to estimate nodes’ OP and network delays.

All intermediate operators are not assigned to hosts at the first placement, we search hosts for each operator according to the order of increasing operator’s Phase Number (PN). PN denotes the phase of data flow in application. All sources are initialized with PN=0, and any other node’s PN is determined according to the equation: \(PN(o_i) = \max_{p} (US(o_i)) + 1\), in which \(\max_{p}(US(o_i))\) is the biggest PN in all upstreams of \(o_i\). As show in Figure 1, each phase can have several operators, and these operators can be placed simultaneously. Even so, hosts for some operators’ downstreams still can’t be found at the first placement. In this case, we replace them with the sink hosts in order to calculate node’s OP, which is not shown in the algorithm of Figure 2.

Resource discovery is seen as the most expensive action causing the most overhead in our algorithm. To reduce the overhead of resource discovery, we use the sliding query window on operators’ resource requirement. Query can be for any type of resource, we choose the CPU resource because it has the strong relationship with processing delay. Since we hope to find the most appropriate node to host operators while reducing the network delay between operators and also the network usage, the algorithm always prefers to use nodes with more residual resources. \(\rho\) is one of the parameters to control resource discovery overhead. On the one hand, large \(\rho\) will lead to less frequent resource discovery; On the other hand, with increase of \(\rho\), the size of query window becomes larger, which means the cost of a resource discovery may increase. Besides, the size of query window is also determined by the maximal resource requirement for a single host. According to the formula to calculate processing delay of operator above, we can infer the CPU requirement for host to achieve specified processing delay. As illustrated in line 1 in Figure 2, we calculate the maximal CPU capacity requirement for a single node to achieve specified processing delay \(K_1 \cdot q_{d}\) which is the sum of processing delays of all intermediate operators. \(K_1\) represents the contribution of the total processing delay to the final end-to-end delay, which is another parameter to control resource discovery overhead. Large \(K_1\) makes the size of query window smaller to reduce the cost of a resource discovery, but takes higher risk of distributing operators over different hosts, which increase network delay and network usage. In our algorithm, \(\rho\) and \(K_1\) take the value of \([0,1]\). We set \(\rho\) and \(K_1\) to 0.2 and 0.5 respectively in our experiments. Moreover, to further reduce the resource discovery frequency, a strategy of caching query results is adopted. Since our method relies only on calculating node’s OP and the same query window could be used for all operators, the query results can be reused. Resource discovery is triggered only if all cached nodes are not qualified.

As stated before, we want to find the host with the most optimization power to reduce network usage and to satisfy QoS constraints, the query results about node information are sorted in descending order according to their OP for each operator. Then we check the sorted nodes in turn to find out if some node can provide enough capacity for the operator in terms of each type of resources, and if the maximal local single-path delay from sources to the current operator \(Max(|\{i|s \in S_i\})\) is below the specified end-to-end delay threshold. After each operator has been assigned a host, the whole procedure will be repeated until the final network usage does not increase for \(K_2\) times. \(K_2\) gives a tradeoff between the algorithm’s overhead and the performance. In our experiments, we set \(K_2\) to 3, which means if we find that the operator placement does not lead to a smaller network usage in three

![Figure 2. Optimization Power-based operator placement algorithm](image-url)
times, the algorithm will stop and output the mapping of operator-host which generates the smallest network usage.

IV. EVALUATION

A. Experimental Settings

In order to evaluate the network topology influence on the OPB algorithm, we use a trace data from PlanetLab network platform [7], which includes a span of 10 months (July 2007–April 2008) collecting for network delay of every PlanetLab node pair. The total number of nodes is more than 240 and the total number of records is over 110,000. Based on these data of network delay, we can generate network coordinate for every PlanetLab node using Vivaldi algorithm [6]. Since the data of bandwidth between node pair is not provided in the trace file, we used the BRITE [4] to simulate the bandwidths. Bandwidth distribution is based on exponential model with the value range of [10KBps, 10MBps]. Besides, we adopt Random, Exponential, Normal and Zipf distribution model for resource distribution of nodes. In our experiments, we considered 3 types of important node resource: CPU speed, memory size and disk size. Each resource is assigned a value in the range of [2000, 20000].

We consider a synthetic application which consists of 10 operators including 2 sources, 1 sink and 7 intermediate operators. Sources and sink are fixed to some hosts. Moreover, every non-sink operator can have 1 to 3 downstream operators. By default, source’s stream output rate is 5 tuples per second. Selectivity of all intermediate operators is set to 1.0, and the average size of tuple is 10 bytes. In the experiments, we define two adjustable factors f_{tp} and f_{td} to control application’s throughput and end-to-end delay objectives respectively. f_{tp} is for controlling throughput objective. The stream output rate of the sources is $5 \cdot f_{tp}$ tuples per second. In same phase, half of intermediate operators set their selectivity to f_{tp}, and the other half set to $1/f_{tp}$. So when f_{tp} is getting large, throughput of the whole application is increasing and workloads of operators are differentiated in the same phase. f_{td} is the other factor for end-to-end delay objective. Let l denotes the maximal delay between the source hosts and the sink host. So we set the application’s end-to-end delay threshold to $f_{td} \cdot l$, l is unchanged during simulation since the positions of sources and sink are fixed beforehand. So by adjusting f_{td}, we can control the overall end-to-end delay.

To make the evaluation more convincing, we also implemented three alternative operator placement algorithms for comparison: i) SBON algorithm proposed in [8] assigns optimal virtual network coordinate for every operator based on Force-Energy theory, and then perform the k-nearest neighbor search (we set $k=10$) for each operator in the node space to find a host which has enough resource among these k neighbors. ii) MIN-DELAY algorithm does a global search in node space for every operator to find a host which can introduce the minimal delay which is the sum of total processing delay on hosts and network delays from the current operator to the source and sink. iii) RANDOM algorithm assigns a random host for every operator. For all the algorithms, when no eligible node which can meet application’s SLOs is found, placement fails.

B. Results and Analysis

We compared four algorithms above under different resource distribution: Random, Exponential, Normal and Zipf. Since the results are very similar, we only give the comparison results under Zipf distribution in the following figures below due to space limit.

Network Usage and End-to-End delay

First of all, we show the network usage and end-to-end delay achieved after one-time operator placement by these operators set their selectivity to f_{tp}, and the other half set to $1/f_{tp}$. So when f_{tp} is getting large, throughput of the whole application is increasing and workloads of operators are differentiated in the same phase. f_{td} is the other factor for end-to-end delay objective. Let l denotes the maximal delay between the source hosts and the sink host. So we set the application’s end-to-end delay threshold to $f_{td} \cdot l$, l is unchanged during simulation since the positions of sources and sink are fixed beforehand. So by adjusting f_{td}, we can control the overall end-to-end delay.

To make the evaluation more convincing, we also implemented three alternative operator placement algorithms for comparison: i) SBON algorithm proposed in [8] assigns optimal virtual network coordinate for every operator based on Force-Energy theory, and then perform the k-nearest neighbor search (we set $k=10$) for each operator in the node space to find a host which has enough resource among these k neighbors. ii) MIN-DELAY algorithm does a global search in node space for every operator to find a host which can introduce the minimal delay which is the sum of total processing delay on hosts and network delays from the current operator to the source and sink. iii) RANDOM algorithm assigns a random host for every operator. For all the algorithms, when no eligible node which can meet application’s SLOs is found, placement fails.

B. Results and Analysis

We compared four algorithms above under different resource distribution: Random, Exponential, Normal and Zipf. Since the results are very similar, we only give the comparison results under Zipf distribution in the following figures below due to space limit.

Network Usage and End-to-End delay

First of all, we show the network usage and end-to-end delay achieved after one-time operator placement by these
four algorithms. No constraint is declared on the end-to-end delay objective since we want to know the algorithms’ optimization power on this QoS. From Figure 3(a), we can see OPB and MIN-DELAY algorithm generate almost the same better network usage compared with other two when f_{tp} is set to 1 which means throughput is minimal and operators are homogenous. In details, 98.5% of the 5000 operator placements using OPB or MIN-DELAY achieve network usage less than 3.89, but only about 7% achieve the same network usage level when using SBON. The RANDOM algorithm gives no network usage less than 4.0. Figure 3(d) shows the similar conclusion about the end-to-end delay that OPB is the best with 95% of placements achieving a delay less than 22, MIN-DELAY is the second best with about 73%, SBON and RANDOM are after MIN-DELAY with about 5% and 1% respectively. With the increasing of f_{tp}, the network usage and end-to-end delay of all placements using different algorithm increase simultaneously as illustrated in Figure 3. It is because that the increase of throughput makes the bandwidth consumption and host load increase. The slope change of the distribution of network usage and end-to-end delay shows that each algorithm has different sensitivity to varying throughput. From Figure 3, we can learn that variation of throughput always has the minimal impact to OPB, which means OPB is the least sensitive to the change of throughput and performs the best in reducing network usage and end-to-end delay. Different from the result of comparing network usage, SBON has the worst performance in reducing end-to-end delay when throughput is large. We think it is due to the fact that SBON use only network delay between hosts as the main contribution for the end-to-end delay. But in reality, processing delay of the operator can also affect the overall delay significantly when workload on the operator increases. To further verify our observation on algorithms’ sensitivity to varying throughput, we conduct a set of experiments on random-generated application scenarios. Table I gives the statistical data about network usage and the end-to-end delay with f_{tp} from 1 to 10 respectively. By calculating data variance for all 4 algorithms, we get the results that the variance of network usage and end-to-end delay for SBON are 9853.31 and 34.35, for MIN-DELAY 367.73 and 6.06, for RANDOM 202058.02 and 18.64, and for OPB 364.9 and 4.54. So we can conclude that OPB<MIN-DELAY<SBON in sensitivity for network usage and OPB<MIN-DELAY<RANDOM<SBON in sensitivity for end-to-end delay, which is consistent with the previous experiments.

<table>
<thead>
<tr>
<th>f_{tp}</th>
<th>SBON</th>
<th>Min-Delay</th>
<th>Random</th>
<th>OPB</th>
</tr>
</thead>
<tbody>
<tr>
<td>NU</td>
<td>ED</td>
<td>NU</td>
<td>ED</td>
<td>NU</td>
</tr>
<tr>
<td>1</td>
<td>7.56</td>
<td>22.95</td>
<td>3.94</td>
<td>22.44</td>
</tr>
<tr>
<td>2</td>
<td>16.83</td>
<td>22.99</td>
<td>5.97</td>
<td>22.48</td>
</tr>
<tr>
<td>3</td>
<td>29.77</td>
<td>23.09</td>
<td>8.01</td>
<td>22.57</td>
</tr>
<tr>
<td>4</td>
<td>46.39</td>
<td>23.24</td>
<td>10.1</td>
<td>22.72</td>
</tr>
<tr>
<td>5</td>
<td>52.49</td>
<td>23.24</td>
<td>12.1</td>
<td>22.98</td>
</tr>
</tbody>
</table>

Success Rate
We think success rate is another indication of performance for operator placement. Here success rate is defined as the rate of successful placement that meets application’s SLOs to the total number of placement requests. We consider throughput and end-to-end delay as QoS metrics in the experiments. As illustrated before, factor f_d is used to control the end-to-end delay objective. A large f_d results in a large end-to-end delay threshold, and relaxes the corresponding constraint to the increase of the success rate. Figure 4(a) shows the change of success rate of total 1000 placement requests with different f_d. First, we fix f_{tp} to 5 so that the throughput objective has the same effect on success rate in all experiments. We can see from the figure that OPB always achieve the highest success rate, and the success rate increase continuously with f_d increasing. The success rates of other three algorithms fluctuate at some points when f_d increasing. Similarly, to make end-to-end delay objective has the same effect on success ratio during all experiments, we fix f_d to 10. Since we fix f_{tp} to 10 so that the end-to-end delay objective has the same effect on success rate in all experiment settings. Since f_{tp} corresponds to throughput, large f_{tp} leads to increase of resource requirement of some operators, which reduces the space of eligible nodes for hosting operators. So success rate would be low if f_{tp} is small. Figure 4(b) shows the change of the success rate of total 1000 placement requests with f_{tp} increasing. We can also see that OPB still achieves the highest success rate, and the success rate decreases continuously with f_{tp} increasing.

Resource Discovery Frequency
For SBON, MIN-DELAY and OPB algorithms, the main runtime overhead is resource discovery for querying eligible potential hosts. In our study, we assume that they rely on the same resource discovery service and have the same overhead for a discovery. So by counting times of resource discovery, we can roughly compare their overhead. The RANDOM algorithm is not considered, because it performs worst in the other aspects of performance. We counted the average times of resource discovery for all successful one-time placements. From Figure 5 we can see that the number of resource discovery of SBON and MIN-DELAY is not affected by variation of the throughput or end-to-end delay objective. This is because that they have to do a resource discovery for each operator, and the discovery results can’t be cached and reused. Since our application has 7 intermediate operators for placing, the number of resource discovery is always 7. Benefiting from the result caching, OPB introduces less resource discovery in all experiments although the frequency of resource discovery changes with varying SLOs. When f_{tp} is increasing, some operators have more resource requirements for hosts, which
reduce the probability of finding eligible hosts in one resource discovery and requires more resource discovery to find hosts. When \(f_q \) is increasing, we found discovery overhead increases at the beginning, which is explained by the fact that the probability of finding eligible hosts in one resource discovery is dominated by the resource distribution at that time. With more and more operators are placed, the number of eligible candidates for new operator decreases, resulting in more discovery. But after some turning point, the end-to-end delay constraint becomes less significant so that the number of eligible candidates increases again. Since \(\rho \), the parameter controlling resource query in OPB, is set to 0.2 in our experiments, the number of resource discovery in one-time operator placement will not be greater than 5.

When \(f_q \) is increasing, we found discovery overhead increases at the beginning, which is explained by the fact that the probability of finding eligible hosts in one resource discovery is dominated by the resource distribution at that time. With more and more operators are placed, the number of eligible candidates for new operator decreases, resulting in more discovery. But after some turning point, the end-to-end delay constraint becomes less significant so that the number of eligible candidates increases again. Since \(\rho \), the parameter controlling resource query in OPB, is set to 0.2 in our experiments, the number of resource discovery in one-time operator placement will not be greater than 5.

VI. CONCLUSION

By using network usage as the optimization objective, and SLOs as constraints, we formalize operator placement as a constrained optimization problem. Since no global optimal solution can be obtained in polynomial time, we rely on heuristic approach to get a local optimal solution. To make the local optimal solution closer to the global one, we propose a Optimization Power-based operator placement algorithm (OPB), in which the Optimization Power describes node’s capacity to reduce network usage and to satisfy QoS constraints. Our experimental results show that OPB has performance advantage compared to some other operator placement algorithms. We leave this problem to be explored in our future work.

ACKNOWLEDGMENT

This work is supported by NSF of China (90812001), 863 Program of China (2010AA012404), and International Cooperation Project of MOST (2009DFA12110).

