
Multi-Stage Packet Filtering in Network Smart Cards

HongQian Karen Lu

Smart Cards Research, Axalto, Inc., 8311 North FM 620 Road, Austin, TX 78726, USA
karenlu@axalto.com

Abstract: Network smart cards are smart cards with networking capabilities.
They have opened new opportunities for the use of smart cards in Internet ap-
plications. At the same time, network smart cards are exposed to network secu-
rity threats just as other computers on the Internet. Unfortunately, existing de-
signs of network security mechanisms, such as packet filtering, may not be best
suited for smart cards because the computing resources of the cards are too lim-
ited. This paper presents a new packet filtering approach that overcomes this
difficulty. The packet filtering is performed in multiple stages. It drops un-
wanted packets as early as possible, starting at the I/O interrupt level. This
builds a network firewall inside smart cards and reduces resource usage for
packet processing. It can be used with different hardware and software configu-
rations and with various filter rules. Advantages of this approach include better
security, reduced memory usage, and enhanced performance.

1 Introduction

An exciting new phenomenon in the smart card industry is the emergence of network
smart cards, which are smart cards with networking capabilities [1]. The network
smart cards can provide services and access resources on the Internet, opening new
opportunities for the smart card industry. On one hand, because of their security,
portability and tamper-resistance, network smart cards provide security and conven-
ience over the Internet, which is better than other secure tokens [2]. However, on the
other hand, network smart cards are exposed to network security threats just as other
computers on the Internet. Therefore, they require security protections as well. Unfor-
tunately, existing designs and implementations of network security mechanisms, such
as packet filtering, may not be best suited to network smart cards because of the
cards’ computing resource limitations.

Packet filtering is a key component of the network firewall technique. In the Internet
world, a firewall is a network security mechanism. It is typically used to prevent un-
authorized Internet users from accessing private networks connected to the Internet.
Firewalls can be implemented in hardware, software, or a combination of both.
Packet filtering is typically done at protocol layers. However, allocating memory for a
packet, processing the packet through layers, and then filtering out the packet waste
CPU time and memory resources.

Smart cards have very limited memory resources compared to other network devices
or computers. For example, a network smart card may have only 6K bytes of RAM,
which seems to be plenty for a smart card. However, this memory is very little for a
network device because it must deal with a large amount of data in real-time. The
resource need is even higher when communicating over a secure channel. In addition,
once connected to the network, the network smart card may face a large number of
unwanted messages. If not managed properly, the card’s memory buffers may be used
up very quickly. Furthermore, network smart cards must protect themselves from
network attacks. Therefore, new methods of packet filtering that are practical and
efficient for network smart cards must be developed. This paper presents one such
method called the multi-stage packet filtering. It is a software method that is adapt-
able to hardware configurations.

The new packet filtering method has two goals: security and resource management.
The goals are approached by performing packet filtering as early as possible before
more resources are consumed. The filtering has multiple stages starting from the I/O
interrupt service routine. The amount of filtering at each stage is configured accord-
ing to multiple factors, including filtering rules, the hardware configuration, hardware
capability, the nature of the data link layer, memory buffering scheme, and the net-
work stack process model.

The multi-stage packet filtering drops unwanted packets early to build a network
firewall inside the network smart card, to save memory resources, and to reduce CPU
usage for packet processing. It is a general framework of efficient packet filtering,
which can be used with a variety of hardware and software configurations and with
various filter rules. The method has several advantages over existing packet filtering
designs, including better security, reduced memory usage, and enhanced perform-
ance. The approach is applicable to a variety of small resource-constrained embedded
network devices.

The rest of the paper is organized as follows. Section 2 discusses the related work.
Section 3 provides an overview of the multi-stage packet filtering method. Sections 4
through 6 present the details of the packet filtering at each of the multiple stages. The
implementation is discussed in Section 7. Section 8 concludes the paper.

2 Related Work

A great deal of literature is available on network firewalls and packet filtering
[3][4][5] . Many commercial products are also available. The packet filtering is typi-
cally done at Ethernet, IP, and TCP/UDP layers, that is, at the protocol processing
stage. Extensive research on packet filtering in the past twenty years has produced
excellent results and made many applications possible, such as network monitoring,
traffic collection, performance measurement, packet classification in routers, firewall
filtering and intrusion detection. The references [6][7] offer examples of the packet
filtering research, which focus on flexible, extensible, and generalized filter abstrac-
tions and show how to compile the high-level abstractions to efficient implementa-

tions. These research were mostly based on modern operating systems and computing
systems, such as workstations (in the past) and personal computers (at present). The
packet filter is normally one module of the operating system, which executes at the
protocol processing stage or is parallel to the protocol-processing module [6].

In contrast, the work described herein focuses on the design and implementation of
packet filtering for small resource-constrained embedded network devices, such as
network smart cards. The main purposes of the filtering here are security and efficient
resource management. The packet filtering executes at more than one stage in order to
drop unwanted packets as early as possible and to best use limited computing re-
sources.

In a previous paper, we have proposed a front-end packet filtering at the AHDLC
layer for resource-constrained network devices [8]. This AHDLC packet filtering
method is applicable for devices using PPP as network connections. The multi-stage
packet filtering presented in this paper is a further elaboration of the front-end packet
filtering concept. This elaboration includes three main aspects: (1) the front is pushed
further to the I/O interrupt service routine; (2) the filtering is partitioned into stages;
and (3) the main focus is moved to USB/Ethernet smart cards. The following sections
describe the new method in details.

3 Method Overview

The multi-stage packet filtering method has two main purposes: network security and
resource management. Both are extremely important and necessary for network smart
cards. The key concept of the method is the front-end filtering, that is, to perform
packet filtering as early as possible before more resources, such as memory and CPU
time, are consumed. The filtering is done at multiple stages starting from the hard-
ware I/O interrupt service routine. This front-end filtering also makes the device more
secure because it blocks malicious packets upfront.

The amount and type of filtering at each of the multi-stages depend on multiple fac-
tors, including filtering rules, the hardware configuration (e.g. USB, UART), data
link layers (e.g. CDC, EEM, Ethernet), hardware I/O interrupt mechanisms (e.g. byte,
frame, DMA), memory buffering schemes (e.g. straight buffer, chained buffer), hard-
ware capability, and the network stack process model. The implementation of this
method also depends on these factors.

3.1 Network Smart Cards

A network smart card is a smart card that is also an Internet node. The network smart
card implements standard Internet protocols and security protocols inside the card.
Figure 1 illustrates a network smart card that connects to the Internet through a host
computer. The smart card can provide services or access resources over the Internet.

The protocol stack on the network smart card is the same as those on other Internet
nodes.

A traditional smart card communicates with a host using the smart card standard ISO
7816. The host has smart card specific middleware installed in order to communicate
with the card. Through the host, the smart card provides security services to the host
or over the network that the host is connected to. In contrast, the network smart card
communicates with the host computer or a remote computer using Internet protocols.
The host does not have to be trusted [2][9]. No middleware is required on the host
computer or on the remote computer in order to talk with the network smart card.

 Host

Network
Smart card Internet

Figure 1. A network smart card connects to the network via a host computer.

Moving from proprietary computing environment to the mainstream networking envi-
ronment opens many opportunities for smart cards. For example, network smart cards
can establish direct secure connections with remote servers over the Internet [9]. This
capability enables the cards to secure online transactions for Internet applications,
such as online banking, online shopping, e-business, e-government, and e-health care.

Network smart cards present numerous engineering challenges mainly due to their
computing resource limitations. For example, our first network smart card had only
6K bytes of RAM. The bandwidth was limited by the ISO 7816-3 interface and a
bridging protocol [10]. The card resource is scarce considering that it must deal with
real-time network traffic. The computation and communication demands for the card
are even higher for secure communications because of cryptographic computations
and increased network traffic. Many efforts have been made to provide network smart
card functionalities in such resource-constrained environment [1][8][10]. This paper
presents a continued effort to provide security and to manage limited resources for the
card.

Network smart cards connect to the Internet through a host computer using USB or
standard smart card interface ISO 7816. Smart cards with full speed USB interface
use standard USB networking interface [11]. For smart cards that have only ISO 7816
interface, a bridging protocol, called Peer I/O, is required, which sits above the ISO
7816 layer and below the network protocols layer [10]. A device driver or a reader
implements the Peer I/O on the host side to provide a full-duplex serial interface for
the ISO 7816 device. Even this case does not require additional middleware because
host computers know how to network through a serial interface.

The multi-stage packet filtering approach does not require a particular hardware inter-
face. It is applicable to a variety of hardware and software configurations. For the

convenience of discussion, we use USB smart cards as an example. In Section 7 we
discuss the case of network smart cards with standard ISO 7816 interface.

Figure 2 illustrates an example of the protocol stacks for a USB network smart card
and a host computer. The hardware connection between the smart card and the host
computer is the USB. On top of the USB driver is a USB EEM (Ethernet Emulation
Model) driver, which carries Ethernet frames using USB packages [11].

Figure 2. Network stacks in a USB network smart card and the host computer1.

The network layer is the Internet Protocol (IP). Ethernet frames carry IP datagrams.
The transport layer is TCP or UDP. IP datagrams carry TCP or UDP segments. Fig-
ure 3 illustrates the protocol encapsulations.

USB driver

TCP

IP

Ethernet driver

EEM driver

USB packets

USB Network
Smart Card

Network

USB hardware

USB driver

TCP

IP

Ethernet driver

EEM driver

USB hardware

Host system

Header Ethernet frame payload CRC

IP data IP header

TCP data TCP header

Ethernet frame

IP datagram

TCP segment

Figure 3. Protocol Encapsulations.

The TCP/IP network is a packet-switched network. Messages are divided into packets
before they are transmitted. Each packet contains a source address and a destination
address. Packets can follow different routes to their destinations. Once all packets
forming a message arrive at the destination, they are recompiled into the message. In

1 The full speed USB interface and network stack for smart cards are being proposed as an

ETSI smart card standard.

short, the TCP/IP network transmits messages via packets. Packet filtering filters
packets to decide whether or not to let the packets pass, or to classify the packets.
Packet filtering can be performed on in-bound packets as well as out-bound packets.
This paper focuses on filtering of in-bound packets for security purposes.

3.2 Filter Rules

Packet filtering has been studied and used for over twenty years for network monitor-
ing, firewall, and other purposes. Filter rules specify how packet filtering should be
performed. For security purposes, the basic idea is to block all packets, except those
that the filter rules allow to pass [4].

In general, filter rules specify packet pass or drop conditions based on information in
protocol headers. Packet filters look at protocol headers of a packet and check against
filter rules to decide whether or not to let the packet pass. A network stack normally
does not look into the payload (or user data) of a packet.

Some of the filter rules are static; others are dynamic. For example, the network de-
vice’s MAC address is normally fixed, and thus the filter rule associated with the
address is a static rule. In contrast, the permissible target IP address list is dynamic
and, hence, its corresponding filter rules are also dynamic.

Some of the filter rules are stateless while others are stateful. For example, the TCP
layer maintains a state machine for each connection. Rules for checking addresses or
protocol types are stateless, because they do not require any state information. Rules
that depend on the state of a connection are stateful rules. Figure 4 illustrates a classi-
fication of filter rules. The stateful rules may also be classified into static and dy-
namic rules. For the purpose of the multi-state filtering, this further classification is
unnecessary.

Filter rules

isAisA

isA isA

Dynamic rulesStatic rules

Stateless rules Stateful rules
SSl

F

Figure 4. A classification of filter rules.

f

D S

There are different ways to model the packet filtering, including a Boolean expression
tree and a directed acyclic control flow graph (CFG) [6][7]. The two models are com-
putationally equivalent. Figure 5 illustrates a filter example with these two representa-
tions. Research has shown that CFG leads to more efficient implementations [7].

Figure 5. Filter Function Representations.

Packet filter rules are hierarchical, as shown in their representations. Once one filter
rule decides to drop the packet, the remaining rules need not be checked; the packet is
dropped. After a packet passes one filter rule, it still needs to pass other rules down
the hierarchy in order to get to its destination.

The multi-stage packet filtering method is a general packet filtering framework. It
does not depend on a particular filter rule set. It can be used for various filter rule
configurations. The filter rules specification is out of the scope of this paper.

3.3 Software Models

This section examines several stages of an embedded system in which the multi-stage
packet filtering may be performed. When a packet comes into a network smart card,
the I/O hardware of the chip generates an interrupt. The corresponding interrupt ser-
vice routine (ISR) handles the interrupt to get the incoming data. This is the first stage
of packet handling. We may start filtering inside the ISR. This is called the ISR
packet filtering. Then, a memory buffer, e.g. a byte array or a buffer chain, is allo-
cated to store the packet for processing. This is a second stage. The filtering may be
done just before the memory allocation, which is called the pre-memory allocation
packet filtering. The protocol stack processes the packet, making a third stage. We
call the filtering at this stage the protocol stack packet filtering. Depending on the
interrupt handling, memory buffer scheme, and protocol stack, these three stages may
not be completely separated. Figure 6 illustrates these three general stages. It should

OR

Ether.type=IP Ether.type=ARP

Ether.type=ARP

Ether.type=IP

no

no

yes

yes

Tree Representation

True False

CFG Representation

be noted that the protocol stack packet filtering might be further distributed among
protocol layers.

Figure 6. Multi-stage packet filtering.

Figure 7 illustrates two examples of the multi-stage packet filtering. The solid arrow
path shows one example of a software configuration in which the memory allocation
for the in-coming packet is outside of the ISR. This example uses a three-stage packet
filtering. The dashed arrow path shows another example of a software configuration,
with which the memory allocation is inside the ISR. This example uses a two-stage
packet filtering method in which the ISR filtering is executed before the memory
allocation.

Due to time limitation and other constraints of an interrupt service routine, a limited
filtering is done at the interrupt service stage. If the memory allocation is outside of
the interrupt service routine, much of the stateless filtering is performed before the
memory buffer allocation so that unwanted packets do not use additional memory
buffers. The protocol stack filtering applies remaining filter rules, especially stateful
rules, to the packets. Other software models may have additional stages, which may
perform packet filtering. The key of this method is to drop unwanted packets as early
as possible. This blocks malicious packets up front, avoids allocating memory buffers

ISR
Packet filtering

Pre-memory allocation
Packet filtering

Protocol stack packet filtering

IP

TCP UDP

pass

pass

pass

packet

drop

drop

drop

for these packets, and avoids or reduces processing time for the packets. The next few
sections describe each of the filtering stages in more detail.

Applications

Protocol stack
processing

Hardware

Memory
allocation

ISR ISR
Packet filtering

OS

OS

Pre-memory-allocation
Packet filtering

Protocol stack
Packet filtering

Packet stream

ISR
Packet filtering

Protocol stack
Packet filtering

Figure 7. Stages of the packet filtering depend on the software configuration.

4 ISR Packet Filtering

This section describes the packet filter in the input event interrupt service routine
(ISR). This is also called the front-end packet filtering. We first discuss the con-
straints of the ISR. We then describe what an ISR packet filter must do to live with
these constraints.

4.1 Constraints

An I/O interrupt service routine is a software routine that handles I/O events. How an
I/O event triggers an interrupt and how the microprocessor invokes the interrupt ser-
vice routine depend on the chip architecture, the I/O hardware, and the soft-

ware/hardware interface that the chip manufacture provides. Some chips let a soft-
ware programmer write hardware interrupt service routines. Other chips provide a
hardware/software interface layer to deal with hardware interrupts in which case a
software programmer writes interrupt service routines triggered by the interface layer.
The interrupt service routine may be called when a byte arrives, when a packet ar-
rives, or when a larger amount of data arrives. For example, with USB devices, the
interrupt service routine is typically invoked when a USB packet arrives. With full
speed USB bulk data transfer, this may mean that 64 bytes of data have just arrived.

An interrupt service routine normally does some quick and simple things to handle
the interrupt. The program goes back to the routine that was interrupted as soon as
possible. Typically, the ISR has timing constraints. For example, the ISR must finish
before the next input event happens. For USB full speed bulk data transfer on an
otherwise idle bus, the maximum possible speed per pipe is nineteen 64-byte transac-
tions per frame, where one frame is 1 millisecond. This takes about 82% of the bus
bandwidth. Hence, the minimum time interval between the arrivals of two consecu-
tive USB data packets is 43 microseconds. The ISR must finish within this time.

Another constraint for an ISR is the availability of other resources. For example, the
input interrupt may happen when the CPU is doing a non-volatile memory write. In
this case, typically the ISR cannot do a non-volatile memory write. In general, the
ISR should avoid any non-volatile memory write.

A third constraint for an ISR is variable access. An I/O interrupt may happen when
the program is changing a variable. If the ISR tries to access this variable or, worse,
to change the variable, the result is unpredictable. This is known as the data-sharing
problem. Therefore, either the ISR should try to avoid accessing or changing a vari-
able or the variable must be protected, for example, using critical sections. To avoid
the data-sharing problem and to reduce the interrupt latency, the ISR packet filtering
must not access any variables, which means only checking static filter rules.

4.2 Packet Filtering

The input event ISR extracts Ethernet frames (called packets) from the underlying
link layer protocols. Performing packet filtering inside the ISR is feasible because
protocol headers, such as headers of EEM, Ethernet, and IP, are at fixed positions
within their outer protocol packets. For example, an EEM packet has a two-byte
header; the Ethernet packet header has fourteen bytes; and the IP header starts imme-
diately after the Ethernet header. With such fixed positions, the ISR can access header
elements directly.

The basic packet filtering rules are very simple and involve only constants. The fol-
lowing is an example of a set of basic filter rules. These are static rules to be applied
first and can be done in the ISR.

Rule 1: If (Ethernet destination address == my Ethernet address)
Pass the packet.

Rule 2: If the packet passed Rule 1, and if
Type == IP
Pass the packet.

Rule 3: If (Ethernet destination address == ff:ff:ff:ff:ff:ff) and (Type == ARP)
Pass the packet.

Rule 4: If the packet passed Rule 3, and if
 Target IP address == my IP address

 Pass the packet.

Rule 5: If the packet passed Rule 2, and if
Destination IP address == my IP address
Pass the packet.

Rule 6: If the packet passed Rule 5, and if
(Protocol type == TCP) or (Protocol type == UDP)
or (Protocol type == ICMP)
Pass the packet.

The amount of packet filtering in an ISR depends on the CPU speed, the timing con-
straints for the ISR, and the amount of necessary work that the ISR must do. For the
example mentioned earlier, the ISR has as little as 43 microseconds to do its job. One
of our implementations can check the above filter rules in 1.67 microseconds in the
worst-case scenario. That is a sufficiently short execution time to fit into the ISR.
Section 7 provides more details about our implementations.

During software development, one could measure the time needed for the normal ISR
work without the packet filtering. The difference between the allowable time for the
ISR and the time needed for the ISR function is the time interval that the packet filter
can use. Some chips may only have time for checking one filtering rule for an
Ethernet packet header; while other chips may have enough time for checking all
static filter rules inside the ISR.

The packet filtering at ISR is especially useful if the input event ISR allocates mem-
ory buffers for incoming packets. The filtering should be done before the memory
allocation. Regardless whether the allocated memory is a single contiguous memory
or a chained memory buffer, once the ISR decides to drop the packet according to
filtering rules, it will require no memory allocation and no further processing to this
packet. This leads to a reduced memory usage and enhanced performance. For zero-
copy protocol stack implementations, being able to drop packets at ISR still prevents
further processing of the unwanted packets. This again enhances the performance of
the system.

In addition to reduced memory usage and enhanced performance, the unwanted
packet does not go further into the system. This makes the system less susceptible to
network attacks and, hence, results in a more secure system.

5 Pre-Memory-Allocation Packet Filtering

For some hardware and software configurations, the interrupt service routine or the
Direct Memory Access (DMA) puts the incoming packets into a fixed contiguous
memory location. Outside of the ISR, the network protocol stack processes and
queues the packet. Before or during this process, the packet is taken out from the
fixed memory location and put into a dynamically allocated memory buffer or a
buffer chain. The contiguous memory is ready for the ISR or DMA to put in the next
packet. This provides another opportunity for early packet filtering, which filters the
packets before the memory allocation.

This pre-memory-allocation packet filtering, if performed outside the ISR, can check
against all the remaining stateless filter rules, including static rules that were not
checked by the ISR packet filter and dynamic rules. Once one rule decides to drop the
packet, the remaining rules need not be checked; the packet is dropped. The packet
filtering at this stage, again, prevents allocation of memory buffer for unwanted pack-
ets.

One example of dynamic filter rules that can be performed at the pre-memory-
allocation stage checks the destination port number of an incoming packet. Each TCP
or UDP packet contains a destination port number Pd. For example, an http server has
a well-known port number 80; a secure http server has a well-known port number
443. The network smart card maintains a permissible destination port number list, Ld,
which contains port numbers that the card allows the incoming packets to target at a
given time. Then, we have the following rule:

Permissible destination port number rule:

 If Pd ∈ Ld, then pass the packet.

If an incoming packet’s destination port number Pd is not in the list Ld, the packet is
dropped. This list is static if the network smart card is a network server only. The list
is dynamic if the card can be a client as well as a server.

For example, a network smart card provides a secure web server. The permissible
destination port number list Ld initially has only one entry 443. The card is also an
Internet client or an agent. When the card initiates a connection to a remote server
using an ephemeral port number x, then x is added to Ld. When this connection fin-
ishes, the x is removed from Ld. Therefore, the list Ld changes; the associate filter rule
is dynamic.

If a smart card chip has DMA (Direct Memory Access), the incoming data stream is
transferred directly to a pre-specified contiguous memory location without passing
through the CPU. The packet filtering may be performed from the DMA memory
directly to decide whether or not to drop a packet. Note that the packet filtering in this
case may or may not be inside the ISR. If the filtering is inside the ISR, it should
leave the check of the dynamic filtering rules to the next filtering stage.

6 Protocol Stack Packet Filtering

The protocol stack includes a data link layer (e.g. Ethernet), a network layer (IP), and
a transport layer (e.g. TCP, UDP). Conventional packet filters work on the protocol
stack or side-by-side to the protocol stack [6]. With the multi-stage method, the
packet filtering at the protocol processing stage is reduced because of the filtering
already done at previous stages. The filtering at this stage checks remaining filter
rules. The stateful filtering is always done here because it requires state information.
The amount of filtering at this stage depends on how much has been performed in
previous stages. The following are three examples.

1. The protocol stack packet filter does the entire packet filtering work. (There
has been neither ISR nor pre-memory-allocation packet filtering.) This is the
conventional packet filtering.

2. The protocol stack packet filter does a part of the stateless static filtering,
stateless dynamic filtering, and stateful filtering. (There is an ISR packet fil-
ter, but no pre-memory-allocation packet filter.)

3. The protocol stack packet filter does stateful filtering only. (There is an ISR
and a pre-memory-allocation packet filtering.)

7 Implementations

Several smart card companies, such as Axalto, Giesecke & Devrient, and Gemplus,
have demonstrated network smart cards, which have been called Internet smart cards
or web cards, at various conferences in the past few years. We have implemented a
network smart card on a smart card chip from Samsung, which was demonstrated at
Cartes in 2003 and other smart card conferences.

We are currently using a faster USB smart card chip that has a 33 MHz microproces-
sor, 16K of RAM, 128K of ROM and 64K of EEPROM. The network smart card
uses the new USB networking standard, EEM, for the lower link layer to carry
Ethernet frames [11]. For the multi-stage packet filtering, from the software imple-
mentation perspective, the most critical part is the filtering in the interrupt service
routine. For USB bulk data transfer with full speed USB, the ISR has a little less than
43 microseconds. Our implementation of an ISR packet filter using the sample rules,
listed in Section 4, executes in 55 machine cycles in worst-case scenarios. The ISR
packet filter was programmed using the C language. With the chip’s 33 MHz micro-
processor, this takes 1.67 microseconds. Even assuming a 20 MHz practical processor
speed, the ISR filtering, in the worst- case scenario, takes 2.75 microseconds. It could
take less time if coded in an assembly language. Therefore, the proposed packet filter-
ing approach is practical and effective.

In a previous work, we have proposed packet filtering at the AHDLC layer [8]. This
is especially useful for smart cards that have ISO 7816 interface and do not have

USB. For example, our first network smart card prototype used Samsung’s S3FC9BJ
smart card chip, which had only ISO 7816 interface. In this case, the network smart
card uses PPP [12], instead of Ethernet, as the data link layer to carry TCP/IP Internet
protocol packets. The AHDLC layer does framing for the PPP layer [13]. The multi-
stage packet filtering method is also applicable in this situation. If the AHDLC proc-
essing is performed during the interrupt service routine, the filtering that can be per-
formed in the AHDLC layer is under the constraints of the ISR filtering, which is
described in Section 4. Otherwise, if the AHDLC processing is outside of the inter-
rupt service routine, stateless packet filtering can be done during the AHDLC proc-
essing as described in the reference [8]; stateful packet filtering is done at the upper
layer protocol processing stage. In both cases, there can be at least two stages of
packet filtering.

8 Conclusions

The multi-stage packet filtering method presented in this paper builds a network fire-
wall inside network smart cards. It drops unwanted packets as soon as possible to
save memory resources and to reduce CPU usage for packet processing. This is a
general framework of efficient packet filtering for network smart cards. It can be used
with a variety of hardware and software configurations and with various filter rules.
The method has several advantages over existing packet filtering designs, including
better security, reduced memory usage, and enhanced performance. The approach is
applicable to a variety of small resource-constrained embedded network devices to
enhance their security and success on the Internet.

References
[1] Montgomery, M., Ali, A., and Lu, H.K., "SECURE NETWORK CARD - Im-

plementation of a Standard Network Stack in a Smart Card," Sixth Smart Card
Research and Advanced Application IFIP Conference (Cardis), Toulouse,
France, August 23-26, 2004.

[2] Ali, A. and Montgomery, M., “Secure Internet Access and the Role of Network
Smart Card,” Proc. of the 4th IASTED Int. Conf. on Communications, Internet
and Information Technology. Cambridge, MA, USA. Oct 31 - Nov 02, 2005,
page 259-265.

[3] Cheswick, W.R., Bellovin, S.M. and Rubin, A.D., Firewalls and Internet Secu-
rity, Addison-Wesley, 2003.

[4] Lockhart, A., Network Security Hacks, O’Reilly, 2004.
[5] Zwicky, E.D., Cooper, S. and Chapman D.B., Building Internet Firewalls,

O’Reilly, 2000.
[6] McCanne, S. and Jacobson V., The BSD Packet Filter: A New Architecture for

User-level Packet Capture. In Proceedings of the Winter 1993 USENIX Confer-
ence, pages 259-290, January 1993.

[7] Mogul, J., Rashid, R. and Accetta. M., The Packet Filter: An Efficient Mecha-
nism for User-level Network Code. In Proceedings of the Eleventh ACM Sym-
posium on Operating Systems Principles, pages 39-51, November 1987.

[8] Lu, H.K., "Firewall at AHDLC Layer," The 2005 International Conference on
Embedded Systems and Applications, June 27-30, 2005, Las Vegas, USA.

[9] Lu, H.K. and Ali, A., "Prevent Online Identity Theft - Using Network Smart
Cards for Secure Online Transactions," 7th Information Security Conference
(ISC), Palo Alto, CA, USA, September 27-29, 2004.

[10] Lu, H.K., "New Advances in Smart Card Communication," International Con-
ference on Computing, Communications and Control Technologies (CCCT),
Austin, TX, USA, August 14-17, 2004.

[11] Universal Serial Bus Communications Class Subclass Specification for Ethernet
Emulation Model Devices,
http://www.usb.org/developers/devclass_docs/CDC_EEM10.pdf.

[12] PPP – RFC 1662.
[13] Calson, J., PPP Design, Implementation, and Debugging, Addison-Wesley,

2000.

	3.3 Software Models
	4.1 Constraints
	4.2 Packet Filtering

